import numpy as np import pandas import csv from math import sqrt from sklearn.cluster import DBSCAN from sklearn.cluster import OPTICS import order_bounding_boxes_in_each_block def get_average_xy(list_input): csv_name = "temporary/list_to_csv_with_corner_points.csv" new_list = [] resultFile = open(csv_name, 'w') wr = csv.writer(resultFile, delimiter=";") wr.writerow(["element", "xmin","ymin","xmax","ymax", "ausrichtung","point_xmi_ymi","point_xma_ymi","point_xmi_yma","point_xma_yma"]) for element in list_input: xavg_elem = 0 yavg_elem = 0 ymin = 100000000 ymax = 0 xmin = 100000000 xmax = 0 for blub in element: #get the smallest and largest x and y value for whole block xavg_elem += (float(blub[0]) + float(blub[2]))/2 yavg_elem += (float(blub[1]) + float(blub[3]))/2 if float(blub[1]) < ymin: ymin = float(blub[1]) #print("y_min:",y_min) if float(blub[0]) < xmin: xmin = float(blub[0]) if float(blub[3]) > ymax: ymax = float(blub[3]) if float(blub[2]) > xmax: xmax = float(blub[2]) if float(xmax)-float(xmin) > 1.3*(float(ymax)-float(ymin)): ausrichtung = 0 #horizontal #print("horizontal") if 1.5*(float(xmax)-float(xmin)) < float(ymax)-float(ymin): ausrichtung = 1 #vertikal #print("vertikal") else: ausrichtung = 3 #sonstiges #print("sonstiges") xavg_elem = xavg_elem/len(element) #print(xavg_elem) yavg_elem = yavg_elem/len(element) #element.extend([xavg_elem, yavg_elem]) #print(element) #new_list.append(element) ##### GET CORNER POINTS point_xmi_ymi = [xmin,ymin] point_xma_ymi = [xmax,ymin] point_xmi_yma = [xmin,ymax] point_xma_yma = [xmax,ymax] wr.writerow([element,xmin,ymin,xmax,ymax, ausrichtung,point_xmi_ymi,point_xma_ymi,point_xmi_yma,point_xma_yma]) resultFile.close() #print(new_list) return csv_name def intersects(rectangle1, rectangle2): #using the separating axis theorem #print(rectangle2[0]) #for rect in rectangle1: rect_1_min = eval(rectangle1[0]) rect_1_max = eval(rectangle1[3]) rect1_bottom_left_x= rect_1_min[0] rect1_top_right_x=rect_1_max[0] rect1_bottom_left_y= rect_1_max[1] rect1_top_right_y= rect_1_min[1] rect_2_min = eval(rectangle2[0]) rect_2_max = eval(rectangle2[3]) rect2_bottom_left_x= rect_2_min[0] rect2_top_right_x=rect_2_max[0] rect2_bottom_left_y= rect_2_max[1] rect2_top_right_y=rect_2_min[1] return not (rect1_top_right_x < rect2_bottom_left_x or rect1_bottom_left_x > rect2_top_right_x or rect1_top_right_y > rect2_bottom_left_y or rect1_bottom_left_y < rect2_top_right_y) def dist(rectangle1, rectangle2): #get minimal distance between two rectangles distance = 100000000 #print(rectangle1) for point1 in rectangle1[:4]: point1 = eval(point1) #print(point1) for point2 in rectangle2[:4]: #print(point2) point2 = eval(point2) #dist1 = (float(point2[0]) - float(point1[0])) + ((float(point2[1]) - float(point1[1]))) dist = sqrt(((float(point2[0]) - float(point1[0])))**2 + ((float(point2[1]) - float(point1[1])))**2) #print(dist) if dist < distance: distance = dist if rectangle1[4] != rectangle2[4]: distance = dist + 100 #print(intersects(rectangle1,rectangle2)) if intersects(rectangle1, rectangle2): distance = 0 #print(rectangle1) return distance def clustering(distance_matrix): db = DBSCAN(eps=3, min_samples=1, metric="precomputed").fit(dm) ##3.93 until now, bei 5 shon mehr erkannt, 7 noch mehr erkannt aber auch schon zu viel; GV12 ist 4.5 gut für LH zu wenig #db = OPTICS(min_samples=1,xi=0.1, metric="precomputed").fit(dm) labels = db.labels_ # Number of clusters in labels n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) print('Estimated number of clusters: %d' % n_clusters_) data_df = pandas.read_csv("/home/bscheibel/PycharmProjects/dxf_reader/temporary/list_to_csv_with_corner_points.csv", sep=";") data_df["cluster"] = labels data_df.groupby(['cluster','ausrichtung'])['element'].apply(','.join).reset_index().to_csv("values_clusteredfrom_precomputed_dbscan.csv",sep=";", header=False, index=False) #file = "/home/bscheibel/PycharmProjects/dxf_reader/drawings/5152166_Rev04.html" file = "/home/bscheibel/PycharmProjects/dxf_reader/drawings/5129275_Rev01-GV12.html" result = order_bounding_boxes_in_each_block.get_bound_box(file) #print(result) get_average_xy(result) #rectangle1 = [[450,286],[464,286],[450,376],[464,376]] #rectangle2 = [[450,316],[456,316],[450,329],[456,329]] #rectangle3 = [[23,45],[35,45],[23,60],[35,60]] #print(dist(rectangle1,rectangle2)) data = pandas.read_csv("/home/bscheibel/PycharmProjects/dxf_reader/temporary/list_to_csv_with_corner_points.csv", sep=";") data = data[["point_xmi_ymi","point_xma_ymi","point_xmi_yma","point_xma_yma","ausrichtung"]].replace("'","") #print(data) data.to_csv("blub.csv", sep=";", index=False, header=None) result = [] with open('blub.csv') as csvfile: readCSV = csv.reader(csvfile, delimiter=';') result = list(readCSV) dm = np.asarray([[dist(p1, p2) for p2 in result] for p1 in result]) with np.printoptions(threshold=np.inf): print(dm) clustering(dm)