# coding: utf8 import numpy as np import pandas import csv from math import sqrt from sklearn.cluster import DBSCAN def get_average_xy(list_input, path): csv_name = path+"/temporary/list_to_csv_with_corner_points.csv" resultFile = open(csv_name, 'w+') wr = csv.writer(resultFile, delimiter=";") wr.writerow(["element", "xmin","ymin","xmax","ymax", "ausrichtung","point_xmi_ymi","point_xma_ymi","point_xmi_yma","point_xma_yma"]) result_df = pandas.DataFrame(columns=["point_xmi_ymi","point_xma_ymi","point_xmi_yma","point_xma_yma","ausrichtung"]) for element in list_input: xavg_elem = 0 yavg_elem = 0 ymin = 100000000 ymax = 0 xmin = 100000000 xmax = 0 newList = [] check = False if len(element) == 5 and not isinstance(element[0], list): newList.append(element) element = newList """if len(element) != 5 and isinstance(element[0], list): for el in element: check = isinstance(el[0], list) if len(el) != 5: print(el) #if check: # print(el)""" for blub in element: #get the smallest and largest x and y value for whole block if isinstance(blub[0],list) and len(blub[0])==5: blub = blub [0] if float(blub[1]) < ymin: ymin = float(blub[1]) #print("y_min:",y_min) if float(blub[0]) < xmin: xmin = float(blub[0]) if float(blub[3]) > ymax: ymax = float(blub[3]) if float(blub[2]) > xmax: xmax = float(blub[2]) if float(xmax)-float(xmin) > 1.3*(float(ymax)-float(ymin)): ausrichtung = 0 #horizontal if 1.5*(float(xmax)-float(xmin)) < float(ymax)-float(ymin): ausrichtung = 1 #vertikal else: ausrichtung = 3 #sonstiges ##### GET CORNER POINTS point_xmi_ymi = [xmin,ymin] point_xma_ymi = [xmax,ymin] point_xmi_yma = [xmin,ymax] point_xma_yma = [xmax,ymax] wr.writerow([element,xmin,ymin,xmax,ymax, ausrichtung,point_xmi_ymi,point_xma_ymi,point_xmi_yma,point_xma_yma]) result_df.loc[len(result_df)]=[point_xmi_ymi,point_xma_ymi, point_xmi_yma, point_xma_yma,ausrichtung] resultFile.close() return result_df def intersects(rectangle1, rectangle2): #using the separating axis theorem, returns true if they intersect, otherwise false rect_1_min = eval(rectangle1[0]) rect_1_max = eval(rectangle1[3]) rect1_bottom_left_x= rect_1_min[0] rect1_top_right_x=rect_1_max[0] rect1_bottom_left_y= rect_1_max[1] rect1_top_right_y= rect_1_min[1] rect_2_min = eval(rectangle2[0]) rect_2_max = eval(rectangle2[3]) rect2_bottom_left_x= rect_2_min[0] rect2_top_right_x=rect_2_max[0] rect2_bottom_left_y= rect_2_max[1] rect2_top_right_y=rect_2_min[1] return not (rect1_top_right_x < rect2_bottom_left_x or rect1_bottom_left_x > rect2_top_right_x or rect1_top_right_y > rect2_bottom_left_y or rect1_bottom_left_y < rect2_top_right_y) def dist(rectangle1, rectangle2): #get minimal distance between two rectangles distance = 100000000 for point1 in rectangle1[:4]: point1 = eval(point1) for point2 in rectangle2[:4]: point2 = eval(point2) dist = sqrt(((float(point2[0]) - float(point1[0])))**2 + ((float(point2[1]) - float(point1[1])))**2) if dist < distance: distance = dist if rectangle1[4] != rectangle2[4]: distance = dist + 100 if intersects(rectangle1, rectangle2): distance = 0 return distance def clustering(dm,eps,path): db = DBSCAN(eps=eps, min_samples=1, metric="precomputed").fit(dm) labels = db.labels_ n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) print('Estimated number of clusters: %d' % n_clusters_) data_df = pandas.read_csv(path +"/temporary/list_to_csv_with_corner_points.csv", sep=";") data_df["cluster"] = labels data_df.groupby(['cluster', 'ausrichtung'])['element'].apply(','.join).reset_index().to_csv(path+"/temporary/values_clusteredfrom_precomputed_dbscan.csv",sep=";", header=False, index=False) return data_df def cluster_and_preprocess(result,eps,path): result = get_average_xy(result, path) #input: array of arrays, output: either csv file or array of arrays result.to_csv(path+"/temporary/blub.csv", sep=";", index=False, header=None) with open(path+"/temporary/blub.csv") as csvfile: readCSV = csv.reader(csvfile, delimiter=';') result = list(readCSV) dm = np.asarray([[dist(p1, p2) for p2 in result] for p1 in result]) clustering_result = clustering(dm,float(eps), path) return clustering_result