123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305 |
- .. Copyright (C) 2001-2019 NLTK Project
- .. For license information, see LICENSE.TXT
- ===========
- Probability
- ===========
- >>> import nltk
- >>> from nltk.probability import *
- FreqDist
- --------
- >>> text1 = ['no', 'good', 'fish', 'goes', 'anywhere', 'without', 'a', 'porpoise', '!']
- >>> text2 = ['no', 'good', 'porpoise', 'likes', 'to', 'fish', 'fish', 'anywhere', '.']
- >>> fd1 = nltk.FreqDist(text1)
- >>> fd1 == nltk.FreqDist(text1)
- True
- Note that items are sorted in order of decreasing frequency; two items of the same frequency appear in indeterminate order.
- >>> import itertools
- >>> both = nltk.FreqDist(text1 + text2)
- >>> both_most_common = both.most_common()
- >>> list(itertools.chain(*(sorted(ys) for k, ys in itertools.groupby(both_most_common, key=lambda t: t[1]))))
- [('fish', 3), ('anywhere', 2), ('good', 2), ('no', 2), ('porpoise', 2), ('!', 1), ('.', 1), ('a', 1), ('goes', 1), ('likes', 1), ('to', 1), ('without', 1)]
- >>> both == fd1 + nltk.FreqDist(text2)
- True
- >>> fd1 == nltk.FreqDist(text1) # But fd1 is unchanged
- True
- >>> fd2 = nltk.FreqDist(text2)
- >>> fd1.update(fd2)
- >>> fd1 == both
- True
- >>> fd1 = nltk.FreqDist(text1)
- >>> fd1.update(text2)
- >>> fd1 == both
- True
- >>> fd1 = nltk.FreqDist(text1)
- >>> fd2 = nltk.FreqDist(fd1)
- >>> fd2 == fd1
- True
- ``nltk.FreqDist`` can be pickled:
- >>> import pickle
- >>> fd1 = nltk.FreqDist(text1)
- >>> pickled = pickle.dumps(fd1)
- >>> fd1 == pickle.loads(pickled)
- True
- Mathematical operations:
- >>> FreqDist('abbb') + FreqDist('bcc')
- FreqDist({'b': 4, 'c': 2, 'a': 1})
- >>> FreqDist('abbbc') - FreqDist('bccd')
- FreqDist({'b': 2, 'a': 1})
- >>> FreqDist('abbb') | FreqDist('bcc')
- FreqDist({'b': 3, 'c': 2, 'a': 1})
- >>> FreqDist('abbb') & FreqDist('bcc')
- FreqDist({'b': 1})
- ConditionalFreqDist
- -------------------
- >>> cfd1 = ConditionalFreqDist()
- >>> cfd1[1] = FreqDist('abbbb')
- >>> cfd1[2] = FreqDist('xxxxyy')
- >>> cfd1
- <ConditionalFreqDist with 2 conditions>
- >>> cfd2 = ConditionalFreqDist()
- >>> cfd2[1] = FreqDist('bbccc')
- >>> cfd2[2] = FreqDist('xxxyyyzz')
- >>> cfd2[3] = FreqDist('m')
- >>> cfd2
- <ConditionalFreqDist with 3 conditions>
- >>> r = cfd1 + cfd2
- >>> [(i,r[i]) for i in r.conditions()]
- [(1, FreqDist({'b': 6, 'c': 3, 'a': 1})), (2, FreqDist({'x': 7, 'y': 5, 'z': 2})), (3, FreqDist({'m': 1}))]
- >>> r = cfd1 - cfd2
- >>> [(i,r[i]) for i in r.conditions()]
- [(1, FreqDist({'b': 2, 'a': 1})), (2, FreqDist({'x': 1}))]
- >>> r = cfd1 | cfd2
- >>> [(i,r[i]) for i in r.conditions()]
- [(1, FreqDist({'b': 4, 'c': 3, 'a': 1})), (2, FreqDist({'x': 4, 'y': 3, 'z': 2})), (3, FreqDist({'m': 1}))]
- >>> r = cfd1 & cfd2
- >>> [(i,r[i]) for i in r.conditions()]
- [(1, FreqDist({'b': 2})), (2, FreqDist({'x': 3, 'y': 2}))]
- Testing some HMM estimators
- ---------------------------
- We extract a small part (500 sentences) of the Brown corpus
- >>> corpus = nltk.corpus.brown.tagged_sents(categories='adventure')[:500]
- >>> print(len(corpus))
- 500
- We create a HMM trainer - note that we need the tags and symbols
- from the whole corpus, not just the training corpus
- >>> from nltk.util import unique_list
- >>> tag_set = unique_list(tag for sent in corpus for (word,tag) in sent)
- >>> print(len(tag_set))
- 92
- >>> symbols = unique_list(word for sent in corpus for (word,tag) in sent)
- >>> print(len(symbols))
- 1464
- >>> trainer = nltk.tag.HiddenMarkovModelTrainer(tag_set, symbols)
- We divide the corpus into 90% training and 10% testing
- >>> train_corpus = []
- >>> test_corpus = []
- >>> for i in range(len(corpus)):
- ... if i % 10:
- ... train_corpus += [corpus[i]]
- ... else:
- ... test_corpus += [corpus[i]]
- >>> print(len(train_corpus))
- 450
- >>> print(len(test_corpus))
- 50
- And now we can test the estimators
- >>> def train_and_test(est):
- ... hmm = trainer.train_supervised(train_corpus, estimator=est)
- ... print('%.2f%%' % (100 * hmm.evaluate(test_corpus)))
- Maximum Likelihood Estimation
- -----------------------------
- - this resulted in an initialization error before r7209
- >>> mle = lambda fd, bins: MLEProbDist(fd)
- >>> train_and_test(mle)
- 22.75%
- Laplace (= Lidstone with gamma==1)
- >>> train_and_test(LaplaceProbDist)
- 66.04%
- Expected Likelihood Estimation (= Lidstone with gamma==0.5)
- >>> train_and_test(ELEProbDist)
- 73.01%
- Lidstone Estimation, for gamma==0.1, 0.5 and 1
- (the later two should be exactly equal to MLE and ELE above)
- >>> def lidstone(gamma):
- ... return lambda fd, bins: LidstoneProbDist(fd, gamma, bins)
- >>> train_and_test(lidstone(0.1))
- 82.51%
- >>> train_and_test(lidstone(0.5))
- 73.01%
- >>> train_and_test(lidstone(1.0))
- 66.04%
- Witten Bell Estimation
- ----------------------
- - This resulted in ZeroDivisionError before r7209
- >>> train_and_test(WittenBellProbDist)
- 88.12%
- Good Turing Estimation
- >>> gt = lambda fd, bins: SimpleGoodTuringProbDist(fd, bins=1e5)
- >>> train_and_test(gt)
- 86.93%
- Kneser Ney Estimation
- ---------------------
- Since the Kneser-Ney distribution is best suited for trigrams, we must adjust
- our testing accordingly.
- >>> corpus = [[((x[0],y[0],z[0]),(x[1],y[1],z[1]))
- ... for x, y, z in nltk.trigrams(sent)]
- ... for sent in corpus[:100]]
- We will then need to redefine the rest of the training/testing variables
- >>> tag_set = unique_list(tag for sent in corpus for (word,tag) in sent)
- >>> len(tag_set)
- 906
- >>> symbols = unique_list(word for sent in corpus for (word,tag) in sent)
- >>> len(symbols)
- 1341
- >>> trainer = nltk.tag.HiddenMarkovModelTrainer(tag_set, symbols)
- >>> train_corpus = []
- >>> test_corpus = []
- >>> for i in range(len(corpus)):
- ... if i % 10:
- ... train_corpus += [corpus[i]]
- ... else:
- ... test_corpus += [corpus[i]]
- >>> len(train_corpus)
- 90
- >>> len(test_corpus)
- 10
- >>> kn = lambda fd, bins: KneserNeyProbDist(fd)
- >>> train_and_test(kn)
- 0.86%
- Remains to be added:
- - Tests for HeldoutProbDist, CrossValidationProbDist and MutableProbDist
- Squashed bugs
- -------------
- Issue 511: override pop and popitem to invalidate the cache
- >>> fd = nltk.FreqDist('a')
- >>> list(fd.keys())
- ['a']
- >>> fd.pop('a')
- 1
- >>> list(fd.keys())
- []
- Issue 533: access cumulative frequencies with no arguments
- >>> fd = nltk.FreqDist('aab')
- >>> list(fd._cumulative_frequencies(['a']))
- [2.0]
- >>> list(fd._cumulative_frequencies(['a', 'b']))
- [2.0, 3.0]
- Issue 579: override clear to reset some variables
- >>> fd = FreqDist('aab')
- >>> fd.clear()
- >>> fd.N()
- 0
- Issue 351: fix fileids method of CategorizedCorpusReader to inadvertently
- add errant categories
- >>> from nltk.corpus import brown
- >>> brown.fileids('blah')
- Traceback (most recent call last):
- ...
- ValueError: Category blah not found
- >>> brown.categories()
- ['adventure', 'belles_lettres', 'editorial', 'fiction', 'government', 'hobbies', 'humor', 'learned', 'lore', 'mystery', 'news', 'religion', 'reviews', 'romance', 'science_fiction']
- Issue 175: add the unseen bin to SimpleGoodTuringProbDist by default
- otherwise any unseen events get a probability of zero, i.e.,
- they don't get smoothed
- >>> from nltk import SimpleGoodTuringProbDist, FreqDist
- >>> fd = FreqDist({'a':1, 'b':1, 'c': 2, 'd': 3, 'e': 4, 'f': 4, 'g': 4, 'h': 5, 'i': 5, 'j': 6, 'k': 6, 'l': 6, 'm': 7, 'n': 7, 'o': 8, 'p': 9, 'q': 10})
- >>> p = SimpleGoodTuringProbDist(fd)
- >>> p.prob('a')
- 0.017649766667026317...
- >>> p.prob('o')
- 0.08433050215340411...
- >>> p.prob('z')
- 0.022727272727272728...
- >>> p.prob('foobar')
- 0.022727272727272728...
- ``MLEProbDist``, ``ConditionalProbDist'', ``DictionaryConditionalProbDist`` and
- ``ConditionalFreqDist`` can be pickled:
- >>> import pickle
- >>> pd = MLEProbDist(fd)
- >>> sorted(pd.samples()) == sorted(pickle.loads(pickle.dumps(pd)).samples())
- True
- >>> dpd = DictionaryConditionalProbDist({'x': pd})
- >>> unpickled = pickle.loads(pickle.dumps(dpd))
- >>> dpd['x'].prob('a')
- 0.011363636...
- >>> dpd['x'].prob('a') == unpickled['x'].prob('a')
- True
- >>> cfd = nltk.probability.ConditionalFreqDist()
- >>> cfd['foo']['hello'] += 1
- >>> cfd['foo']['hello'] += 1
- >>> cfd['bar']['hello'] += 1
- >>> cfd2 = pickle.loads(pickle.dumps(cfd))
- >>> cfd2 == cfd
- True
- >>> cpd = ConditionalProbDist(cfd, SimpleGoodTuringProbDist)
- >>> cpd2 = pickle.loads(pickle.dumps(cpd))
- >>> cpd['foo'].prob('hello') == cpd2['foo'].prob('hello')
- True
|