123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222 |
- .. Copyright (C) 2001-2019 NLTK Project
- .. For license information, see LICENSE.TXT
- =========================
- Resolution Theorem Prover
- =========================
- >>> from nltk.inference.resolution import *
- >>> from nltk.sem import logic
- >>> from nltk.sem.logic import *
- >>> logic._counter._value = 0
- >>> read_expr = logic.Expression.fromstring
- >>> P = read_expr('P')
- >>> Q = read_expr('Q')
- >>> R = read_expr('R')
- >>> A = read_expr('A')
- >>> B = read_expr('B')
- >>> x = read_expr('x')
- >>> y = read_expr('y')
- >>> z = read_expr('z')
- -------------------------------
- Test most_general_unification()
- -------------------------------
- >>> print(most_general_unification(x, x))
- {}
- >>> print(most_general_unification(A, A))
- {}
- >>> print(most_general_unification(A, x))
- {x: A}
- >>> print(most_general_unification(x, A))
- {x: A}
- >>> print(most_general_unification(x, y))
- {x: y}
- >>> print(most_general_unification(P(x), P(A)))
- {x: A}
- >>> print(most_general_unification(P(x,B), P(A,y)))
- {x: A, y: B}
- >>> print(most_general_unification(P(x,B), P(B,x)))
- {x: B}
- >>> print(most_general_unification(P(x,y), P(A,x)))
- {x: A, y: x}
- >>> print(most_general_unification(P(Q(x)), P(y)))
- {y: Q(x)}
- ------------
- Test unify()
- ------------
- >>> print(Clause([]).unify(Clause([])))
- []
- >>> print(Clause([P(x)]).unify(Clause([-P(A)])))
- [{}]
- >>> print(Clause([P(A), Q(x)]).unify(Clause([-P(x), R(x)])))
- [{R(A), Q(A)}]
- >>> print(Clause([P(A), Q(x), R(x,y)]).unify(Clause([-P(x), Q(y)])))
- [{Q(y), Q(A), R(A,y)}]
- >>> print(Clause([P(A), -Q(y)]).unify(Clause([-P(x), Q(B)])))
- [{}]
- >>> print(Clause([P(x), Q(x)]).unify(Clause([-P(A), -Q(B)])))
- [{-Q(B), Q(A)}, {-P(A), P(B)}]
- >>> print(Clause([P(x,x), Q(x), R(x)]).unify(Clause([-P(A,z), -Q(B)])))
- [{-Q(B), Q(A), R(A)}, {-P(A,z), R(B), P(B,B)}]
- >>> a = clausify(read_expr('P(A)'))
- >>> b = clausify(read_expr('A=B'))
- >>> print(a[0].unify(b[0]))
- [{P(B)}]
- -------------------------
- Test is_tautology()
- -------------------------
- >>> print(Clause([P(A), -P(A)]).is_tautology())
- True
- >>> print(Clause([-P(A), P(A)]).is_tautology())
- True
- >>> print(Clause([P(x), -P(A)]).is_tautology())
- False
- >>> print(Clause([Q(B), -P(A), P(A)]).is_tautology())
- True
- >>> print(Clause([-Q(A), P(R(A)), -P(R(A)), Q(x), -R(y)]).is_tautology())
- True
- >>> print(Clause([P(x), -Q(A)]).is_tautology())
- False
- -------------------------
- Test subsumes()
- -------------------------
- >>> print(Clause([P(A), Q(B)]).subsumes(Clause([P(A), Q(B)])))
- True
- >>> print(Clause([-P(A)]).subsumes(Clause([P(A)])))
- False
- >>> print(Clause([P(A), Q(B)]).subsumes(Clause([Q(B), P(A)])))
- True
- >>> print(Clause([P(A), Q(B)]).subsumes(Clause([Q(B), R(A), P(A)])))
- True
- >>> print(Clause([P(A), R(A), Q(B)]).subsumes(Clause([Q(B), P(A)])))
- False
- >>> print(Clause([P(x)]).subsumes(Clause([P(A)])))
- True
- >>> print(Clause([P(A)]).subsumes(Clause([P(x)])))
- True
- ------------
- Test prove()
- ------------
- >>> print(ResolutionProverCommand(read_expr('man(x)')).prove())
- False
- >>> print(ResolutionProverCommand(read_expr('(man(x) -> man(x))')).prove())
- True
- >>> print(ResolutionProverCommand(read_expr('(man(x) -> --man(x))')).prove())
- True
- >>> print(ResolutionProverCommand(read_expr('-(man(x) & -man(x))')).prove())
- True
- >>> print(ResolutionProverCommand(read_expr('(man(x) | -man(x))')).prove())
- True
- >>> print(ResolutionProverCommand(read_expr('(man(x) -> man(x))')).prove())
- True
- >>> print(ResolutionProverCommand(read_expr('-(man(x) & -man(x))')).prove())
- True
- >>> print(ResolutionProverCommand(read_expr('(man(x) | -man(x))')).prove())
- True
- >>> print(ResolutionProverCommand(read_expr('(man(x) -> man(x))')).prove())
- True
- >>> print(ResolutionProverCommand(read_expr('(man(x) <-> man(x))')).prove())
- True
- >>> print(ResolutionProverCommand(read_expr('-(man(x) <-> -man(x))')).prove())
- True
- >>> print(ResolutionProverCommand(read_expr('all x.man(x)')).prove())
- False
- >>> print(ResolutionProverCommand(read_expr('-all x.some y.F(x,y) & some x.all y.(-F(x,y))')).prove())
- False
- >>> print(ResolutionProverCommand(read_expr('some x.all y.sees(x,y)')).prove())
- False
- >>> p1 = read_expr('all x.(man(x) -> mortal(x))')
- >>> p2 = read_expr('man(Socrates)')
- >>> c = read_expr('mortal(Socrates)')
- >>> ResolutionProverCommand(c, [p1,p2]).prove()
- True
- >>> p1 = read_expr('all x.(man(x) -> walks(x))')
- >>> p2 = read_expr('man(John)')
- >>> c = read_expr('some y.walks(y)')
- >>> ResolutionProverCommand(c, [p1,p2]).prove()
- True
- >>> p = read_expr('some e1.some e2.(believe(e1,john,e2) & walk(e2,mary))')
- >>> c = read_expr('some e0.walk(e0,mary)')
- >>> ResolutionProverCommand(c, [p]).prove()
- True
- ------------
- Test proof()
- ------------
- >>> p1 = read_expr('all x.(man(x) -> mortal(x))')
- >>> p2 = read_expr('man(Socrates)')
- >>> c = read_expr('mortal(Socrates)')
- >>> logic._counter._value = 0
- >>> tp = ResolutionProverCommand(c, [p1,p2])
- >>> tp.prove()
- True
- >>> print(tp.proof())
- [1] {-mortal(Socrates)} A
- [2] {-man(z2), mortal(z2)} A
- [3] {man(Socrates)} A
- [4] {-man(Socrates)} (1, 2)
- [5] {mortal(Socrates)} (2, 3)
- [6] {} (1, 5)
- <BLANKLINE>
- ------------------
- Question Answering
- ------------------
- One answer
- >>> p1 = read_expr('father_of(art,john)')
- >>> p2 = read_expr('father_of(bob,kim)')
- >>> p3 = read_expr('all x.all y.(father_of(x,y) -> parent_of(x,y))')
- >>> c = read_expr('all x.(parent_of(x,john) -> ANSWER(x))')
- >>> logic._counter._value = 0
- >>> tp = ResolutionProverCommand(None, [p1,p2,p3,c])
- >>> sorted(tp.find_answers())
- [<ConstantExpression art>]
- >>> print(tp.proof()) # doctest: +SKIP
- [1] {father_of(art,john)} A
- [2] {father_of(bob,kim)} A
- [3] {-father_of(z3,z4), parent_of(z3,z4)} A
- [4] {-parent_of(z6,john), ANSWER(z6)} A
- [5] {parent_of(art,john)} (1, 3)
- [6] {parent_of(bob,kim)} (2, 3)
- [7] {ANSWER(z6), -father_of(z6,john)} (3, 4)
- [8] {ANSWER(art)} (1, 7)
- [9] {ANSWER(art)} (4, 5)
- <BLANKLINE>
- Multiple answers
- >>> p1 = read_expr('father_of(art,john)')
- >>> p2 = read_expr('mother_of(ann,john)')
- >>> p3 = read_expr('all x.all y.(father_of(x,y) -> parent_of(x,y))')
- >>> p4 = read_expr('all x.all y.(mother_of(x,y) -> parent_of(x,y))')
- >>> c = read_expr('all x.(parent_of(x,john) -> ANSWER(x))')
- >>> logic._counter._value = 0
- >>> tp = ResolutionProverCommand(None, [p1,p2,p3,p4,c])
- >>> sorted(tp.find_answers())
- [<ConstantExpression ann>, <ConstantExpression art>]
- >>> print(tp.proof()) # doctest: +SKIP
- [ 1] {father_of(art,john)} A
- [ 2] {mother_of(ann,john)} A
- [ 3] {-father_of(z3,z4), parent_of(z3,z4)} A
- [ 4] {-mother_of(z7,z8), parent_of(z7,z8)} A
- [ 5] {-parent_of(z10,john), ANSWER(z10)} A
- [ 6] {parent_of(art,john)} (1, 3)
- [ 7] {parent_of(ann,john)} (2, 4)
- [ 8] {ANSWER(z10), -father_of(z10,john)} (3, 5)
- [ 9] {ANSWER(art)} (1, 8)
- [10] {ANSWER(z10), -mother_of(z10,john)} (4, 5)
- [11] {ANSWER(ann)} (2, 10)
- [12] {ANSWER(art)} (5, 6)
- [13] {ANSWER(ann)} (5, 7)
- <BLANKLINE>
|