12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201 |
- """
- Objects for dealing with Chebyshev series.
- This module provides a number of objects (mostly functions) useful for
- dealing with Chebyshev series, including a `Chebyshev` class that
- encapsulates the usual arithmetic operations. (General information
- on how this module represents and works with such polynomials is in the
- docstring for its "parent" sub-package, `numpy.polynomial`).
- Constants
- ---------
- - `chebdomain` -- Chebyshev series default domain, [-1,1].
- - `chebzero` -- (Coefficients of the) Chebyshev series that evaluates
- identically to 0.
- - `chebone` -- (Coefficients of the) Chebyshev series that evaluates
- identically to 1.
- - `chebx` -- (Coefficients of the) Chebyshev series for the identity map,
- ``f(x) = x``.
- Arithmetic
- ----------
- - `chebadd` -- add two Chebyshev series.
- - `chebsub` -- subtract one Chebyshev series from another.
- - `chebmulx` -- multiply a Chebyshev series in ``P_i(x)`` by ``x``.
- - `chebmul` -- multiply two Chebyshev series.
- - `chebdiv` -- divide one Chebyshev series by another.
- - `chebpow` -- raise a Chebyshev series to a positive integer power.
- - `chebval` -- evaluate a Chebyshev series at given points.
- - `chebval2d` -- evaluate a 2D Chebyshev series at given points.
- - `chebval3d` -- evaluate a 3D Chebyshev series at given points.
- - `chebgrid2d` -- evaluate a 2D Chebyshev series on a Cartesian product.
- - `chebgrid3d` -- evaluate a 3D Chebyshev series on a Cartesian product.
- Calculus
- --------
- - `chebder` -- differentiate a Chebyshev series.
- - `chebint` -- integrate a Chebyshev series.
- Misc Functions
- --------------
- - `chebfromroots` -- create a Chebyshev series with specified roots.
- - `chebroots` -- find the roots of a Chebyshev series.
- - `chebvander` -- Vandermonde-like matrix for Chebyshev polynomials.
- - `chebvander2d` -- Vandermonde-like matrix for 2D power series.
- - `chebvander3d` -- Vandermonde-like matrix for 3D power series.
- - `chebgauss` -- Gauss-Chebyshev quadrature, points and weights.
- - `chebweight` -- Chebyshev weight function.
- - `chebcompanion` -- symmetrized companion matrix in Chebyshev form.
- - `chebfit` -- least-squares fit returning a Chebyshev series.
- - `chebpts1` -- Chebyshev points of the first kind.
- - `chebpts2` -- Chebyshev points of the second kind.
- - `chebtrim` -- trim leading coefficients from a Chebyshev series.
- - `chebline` -- Chebyshev series representing given straight line.
- - `cheb2poly` -- convert a Chebyshev series to a polynomial.
- - `poly2cheb` -- convert a polynomial to a Chebyshev series.
- - `chebinterpolate` -- interpolate a function at the Chebyshev points.
- Classes
- -------
- - `Chebyshev` -- A Chebyshev series class.
- See also
- --------
- `numpy.polynomial`
- Notes
- -----
- The implementations of multiplication, division, integration, and
- differentiation use the algebraic identities [1]_:
- .. math ::
- T_n(x) = \\frac{z^n + z^{-n}}{2} \\\\
- z\\frac{dx}{dz} = \\frac{z - z^{-1}}{2}.
- where
- .. math :: x = \\frac{z + z^{-1}}{2}.
- These identities allow a Chebyshev series to be expressed as a finite,
- symmetric Laurent series. In this module, this sort of Laurent series
- is referred to as a "z-series."
- References
- ----------
- .. [1] A. T. Benjamin, et al., "Combinatorial Trigonometry with Chebyshev
- Polynomials," *Journal of Statistical Planning and Inference 14*, 2008
- (preprint: https://www.math.hmc.edu/~benjamin/papers/CombTrig.pdf, pg. 4)
- """
- from __future__ import division, absolute_import, print_function
- import warnings
- import numpy as np
- import numpy.linalg as la
- from numpy.core.multiarray import normalize_axis_index
- from . import polyutils as pu
- from ._polybase import ABCPolyBase
- __all__ = [
- 'chebzero', 'chebone', 'chebx', 'chebdomain', 'chebline', 'chebadd',
- 'chebsub', 'chebmulx', 'chebmul', 'chebdiv', 'chebpow', 'chebval',
- 'chebder', 'chebint', 'cheb2poly', 'poly2cheb', 'chebfromroots',
- 'chebvander', 'chebfit', 'chebtrim', 'chebroots', 'chebpts1',
- 'chebpts2', 'Chebyshev', 'chebval2d', 'chebval3d', 'chebgrid2d',
- 'chebgrid3d', 'chebvander2d', 'chebvander3d', 'chebcompanion',
- 'chebgauss', 'chebweight', 'chebinterpolate']
- chebtrim = pu.trimcoef
- #
- # A collection of functions for manipulating z-series. These are private
- # functions and do minimal error checking.
- #
- def _cseries_to_zseries(c):
- """Covert Chebyshev series to z-series.
- Covert a Chebyshev series to the equivalent z-series. The result is
- never an empty array. The dtype of the return is the same as that of
- the input. No checks are run on the arguments as this routine is for
- internal use.
- Parameters
- ----------
- c : 1-D ndarray
- Chebyshev coefficients, ordered from low to high
- Returns
- -------
- zs : 1-D ndarray
- Odd length symmetric z-series, ordered from low to high.
- """
- n = c.size
- zs = np.zeros(2*n-1, dtype=c.dtype)
- zs[n-1:] = c/2
- return zs + zs[::-1]
- def _zseries_to_cseries(zs):
- """Covert z-series to a Chebyshev series.
- Covert a z series to the equivalent Chebyshev series. The result is
- never an empty array. The dtype of the return is the same as that of
- the input. No checks are run on the arguments as this routine is for
- internal use.
- Parameters
- ----------
- zs : 1-D ndarray
- Odd length symmetric z-series, ordered from low to high.
- Returns
- -------
- c : 1-D ndarray
- Chebyshev coefficients, ordered from low to high.
- """
- n = (zs.size + 1)//2
- c = zs[n-1:].copy()
- c[1:n] *= 2
- return c
- def _zseries_mul(z1, z2):
- """Multiply two z-series.
- Multiply two z-series to produce a z-series.
- Parameters
- ----------
- z1, z2 : 1-D ndarray
- The arrays must be 1-D but this is not checked.
- Returns
- -------
- product : 1-D ndarray
- The product z-series.
- Notes
- -----
- This is simply convolution. If symmetric/anti-symmetric z-series are
- denoted by S/A then the following rules apply:
- S*S, A*A -> S
- S*A, A*S -> A
- """
- return np.convolve(z1, z2)
- def _zseries_div(z1, z2):
- """Divide the first z-series by the second.
- Divide `z1` by `z2` and return the quotient and remainder as z-series.
- Warning: this implementation only applies when both z1 and z2 have the
- same symmetry, which is sufficient for present purposes.
- Parameters
- ----------
- z1, z2 : 1-D ndarray
- The arrays must be 1-D and have the same symmetry, but this is not
- checked.
- Returns
- -------
- (quotient, remainder) : 1-D ndarrays
- Quotient and remainder as z-series.
- Notes
- -----
- This is not the same as polynomial division on account of the desired form
- of the remainder. If symmetric/anti-symmetric z-series are denoted by S/A
- then the following rules apply:
- S/S -> S,S
- A/A -> S,A
- The restriction to types of the same symmetry could be fixed but seems like
- unneeded generality. There is no natural form for the remainder in the case
- where there is no symmetry.
- """
- z1 = z1.copy()
- z2 = z2.copy()
- len1 = len(z1)
- len2 = len(z2)
- if len2 == 1:
- z1 /= z2
- return z1, z1[:1]*0
- elif len1 < len2:
- return z1[:1]*0, z1
- else:
- dlen = len1 - len2
- scl = z2[0]
- z2 /= scl
- quo = np.empty(dlen + 1, dtype=z1.dtype)
- i = 0
- j = dlen
- while i < j:
- r = z1[i]
- quo[i] = z1[i]
- quo[dlen - i] = r
- tmp = r*z2
- z1[i:i+len2] -= tmp
- z1[j:j+len2] -= tmp
- i += 1
- j -= 1
- r = z1[i]
- quo[i] = r
- tmp = r*z2
- z1[i:i+len2] -= tmp
- quo /= scl
- rem = z1[i+1:i-1+len2].copy()
- return quo, rem
- def _zseries_der(zs):
- """Differentiate a z-series.
- The derivative is with respect to x, not z. This is achieved using the
- chain rule and the value of dx/dz given in the module notes.
- Parameters
- ----------
- zs : z-series
- The z-series to differentiate.
- Returns
- -------
- derivative : z-series
- The derivative
- Notes
- -----
- The zseries for x (ns) has been multiplied by two in order to avoid
- using floats that are incompatible with Decimal and likely other
- specialized scalar types. This scaling has been compensated by
- multiplying the value of zs by two also so that the two cancels in the
- division.
- """
- n = len(zs)//2
- ns = np.array([-1, 0, 1], dtype=zs.dtype)
- zs *= np.arange(-n, n+1)*2
- d, r = _zseries_div(zs, ns)
- return d
- def _zseries_int(zs):
- """Integrate a z-series.
- The integral is with respect to x, not z. This is achieved by a change
- of variable using dx/dz given in the module notes.
- Parameters
- ----------
- zs : z-series
- The z-series to integrate
- Returns
- -------
- integral : z-series
- The indefinite integral
- Notes
- -----
- The zseries for x (ns) has been multiplied by two in order to avoid
- using floats that are incompatible with Decimal and likely other
- specialized scalar types. This scaling has been compensated by
- dividing the resulting zs by two.
- """
- n = 1 + len(zs)//2
- ns = np.array([-1, 0, 1], dtype=zs.dtype)
- zs = _zseries_mul(zs, ns)
- div = np.arange(-n, n+1)*2
- zs[:n] /= div[:n]
- zs[n+1:] /= div[n+1:]
- zs[n] = 0
- return zs
- #
- # Chebyshev series functions
- #
- def poly2cheb(pol):
- """
- Convert a polynomial to a Chebyshev series.
- Convert an array representing the coefficients of a polynomial (relative
- to the "standard" basis) ordered from lowest degree to highest, to an
- array of the coefficients of the equivalent Chebyshev series, ordered
- from lowest to highest degree.
- Parameters
- ----------
- pol : array_like
- 1-D array containing the polynomial coefficients
- Returns
- -------
- c : ndarray
- 1-D array containing the coefficients of the equivalent Chebyshev
- series.
- See Also
- --------
- cheb2poly
- Notes
- -----
- The easy way to do conversions between polynomial basis sets
- is to use the convert method of a class instance.
- Examples
- --------
- >>> from numpy import polynomial as P
- >>> p = P.Polynomial(range(4))
- >>> p
- Polynomial([ 0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1])
- >>> c = p.convert(kind=P.Chebyshev)
- >>> c
- Chebyshev([ 1. , 3.25, 1. , 0.75], domain=[-1, 1], window=[-1, 1])
- >>> P.chebyshev.poly2cheb(range(4))
- array([ 1. , 3.25, 1. , 0.75])
- """
- [pol] = pu.as_series([pol])
- deg = len(pol) - 1
- res = 0
- for i in range(deg, -1, -1):
- res = chebadd(chebmulx(res), pol[i])
- return res
- def cheb2poly(c):
- """
- Convert a Chebyshev series to a polynomial.
- Convert an array representing the coefficients of a Chebyshev series,
- ordered from lowest degree to highest, to an array of the coefficients
- of the equivalent polynomial (relative to the "standard" basis) ordered
- from lowest to highest degree.
- Parameters
- ----------
- c : array_like
- 1-D array containing the Chebyshev series coefficients, ordered
- from lowest order term to highest.
- Returns
- -------
- pol : ndarray
- 1-D array containing the coefficients of the equivalent polynomial
- (relative to the "standard" basis) ordered from lowest order term
- to highest.
- See Also
- --------
- poly2cheb
- Notes
- -----
- The easy way to do conversions between polynomial basis sets
- is to use the convert method of a class instance.
- Examples
- --------
- >>> from numpy import polynomial as P
- >>> c = P.Chebyshev(range(4))
- >>> c
- Chebyshev([ 0., 1., 2., 3.], [-1., 1.])
- >>> p = c.convert(kind=P.Polynomial)
- >>> p
- Polynomial([ -2., -8., 4., 12.], [-1., 1.])
- >>> P.chebyshev.cheb2poly(range(4))
- array([ -2., -8., 4., 12.])
- """
- from .polynomial import polyadd, polysub, polymulx
- [c] = pu.as_series([c])
- n = len(c)
- if n < 3:
- return c
- else:
- c0 = c[-2]
- c1 = c[-1]
- # i is the current degree of c1
- for i in range(n - 1, 1, -1):
- tmp = c0
- c0 = polysub(c[i - 2], c1)
- c1 = polyadd(tmp, polymulx(c1)*2)
- return polyadd(c0, polymulx(c1))
- #
- # These are constant arrays are of integer type so as to be compatible
- # with the widest range of other types, such as Decimal.
- #
- # Chebyshev default domain.
- chebdomain = np.array([-1, 1])
- # Chebyshev coefficients representing zero.
- chebzero = np.array([0])
- # Chebyshev coefficients representing one.
- chebone = np.array([1])
- # Chebyshev coefficients representing the identity x.
- chebx = np.array([0, 1])
- def chebline(off, scl):
- """
- Chebyshev series whose graph is a straight line.
- Parameters
- ----------
- off, scl : scalars
- The specified line is given by ``off + scl*x``.
- Returns
- -------
- y : ndarray
- This module's representation of the Chebyshev series for
- ``off + scl*x``.
- See Also
- --------
- polyline
- Examples
- --------
- >>> import numpy.polynomial.chebyshev as C
- >>> C.chebline(3,2)
- array([3, 2])
- >>> C.chebval(-3, C.chebline(3,2)) # should be -3
- -3.0
- """
- if scl != 0:
- return np.array([off, scl])
- else:
- return np.array([off])
- def chebfromroots(roots):
- """
- Generate a Chebyshev series with given roots.
- The function returns the coefficients of the polynomial
- .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),
- in Chebyshev form, where the `r_n` are the roots specified in `roots`.
- If a zero has multiplicity n, then it must appear in `roots` n times.
- For instance, if 2 is a root of multiplicity three and 3 is a root of
- multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. The
- roots can appear in any order.
- If the returned coefficients are `c`, then
- .. math:: p(x) = c_0 + c_1 * T_1(x) + ... + c_n * T_n(x)
- The coefficient of the last term is not generally 1 for monic
- polynomials in Chebyshev form.
- Parameters
- ----------
- roots : array_like
- Sequence containing the roots.
- Returns
- -------
- out : ndarray
- 1-D array of coefficients. If all roots are real then `out` is a
- real array, if some of the roots are complex, then `out` is complex
- even if all the coefficients in the result are real (see Examples
- below).
- See Also
- --------
- polyfromroots, legfromroots, lagfromroots, hermfromroots,
- hermefromroots.
- Examples
- --------
- >>> import numpy.polynomial.chebyshev as C
- >>> C.chebfromroots((-1,0,1)) # x^3 - x relative to the standard basis
- array([ 0. , -0.25, 0. , 0.25])
- >>> j = complex(0,1)
- >>> C.chebfromroots((-j,j)) # x^2 + 1 relative to the standard basis
- array([ 1.5+0.j, 0.0+0.j, 0.5+0.j])
- """
- if len(roots) == 0:
- return np.ones(1)
- else:
- [roots] = pu.as_series([roots], trim=False)
- roots.sort()
- p = [chebline(-r, 1) for r in roots]
- n = len(p)
- while n > 1:
- m, r = divmod(n, 2)
- tmp = [chebmul(p[i], p[i+m]) for i in range(m)]
- if r:
- tmp[0] = chebmul(tmp[0], p[-1])
- p = tmp
- n = m
- return p[0]
- def chebadd(c1, c2):
- """
- Add one Chebyshev series to another.
- Returns the sum of two Chebyshev series `c1` + `c2`. The arguments
- are sequences of coefficients ordered from lowest order term to
- highest, i.e., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.
- Parameters
- ----------
- c1, c2 : array_like
- 1-D arrays of Chebyshev series coefficients ordered from low to
- high.
- Returns
- -------
- out : ndarray
- Array representing the Chebyshev series of their sum.
- See Also
- --------
- chebsub, chebmulx, chebmul, chebdiv, chebpow
- Notes
- -----
- Unlike multiplication, division, etc., the sum of two Chebyshev series
- is a Chebyshev series (without having to "reproject" the result onto
- the basis set) so addition, just like that of "standard" polynomials,
- is simply "component-wise."
- Examples
- --------
- >>> from numpy.polynomial import chebyshev as C
- >>> c1 = (1,2,3)
- >>> c2 = (3,2,1)
- >>> C.chebadd(c1,c2)
- array([ 4., 4., 4.])
- """
- # c1, c2 are trimmed copies
- [c1, c2] = pu.as_series([c1, c2])
- if len(c1) > len(c2):
- c1[:c2.size] += c2
- ret = c1
- else:
- c2[:c1.size] += c1
- ret = c2
- return pu.trimseq(ret)
- def chebsub(c1, c2):
- """
- Subtract one Chebyshev series from another.
- Returns the difference of two Chebyshev series `c1` - `c2`. The
- sequences of coefficients are from lowest order term to highest, i.e.,
- [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.
- Parameters
- ----------
- c1, c2 : array_like
- 1-D arrays of Chebyshev series coefficients ordered from low to
- high.
- Returns
- -------
- out : ndarray
- Of Chebyshev series coefficients representing their difference.
- See Also
- --------
- chebadd, chebmulx, chebmul, chebdiv, chebpow
- Notes
- -----
- Unlike multiplication, division, etc., the difference of two Chebyshev
- series is a Chebyshev series (without having to "reproject" the result
- onto the basis set) so subtraction, just like that of "standard"
- polynomials, is simply "component-wise."
- Examples
- --------
- >>> from numpy.polynomial import chebyshev as C
- >>> c1 = (1,2,3)
- >>> c2 = (3,2,1)
- >>> C.chebsub(c1,c2)
- array([-2., 0., 2.])
- >>> C.chebsub(c2,c1) # -C.chebsub(c1,c2)
- array([ 2., 0., -2.])
- """
- # c1, c2 are trimmed copies
- [c1, c2] = pu.as_series([c1, c2])
- if len(c1) > len(c2):
- c1[:c2.size] -= c2
- ret = c1
- else:
- c2 = -c2
- c2[:c1.size] += c1
- ret = c2
- return pu.trimseq(ret)
- def chebmulx(c):
- """Multiply a Chebyshev series by x.
- Multiply the polynomial `c` by x, where x is the independent
- variable.
- Parameters
- ----------
- c : array_like
- 1-D array of Chebyshev series coefficients ordered from low to
- high.
- Returns
- -------
- out : ndarray
- Array representing the result of the multiplication.
- Notes
- -----
- .. versionadded:: 1.5.0
- Examples
- --------
- >>> from numpy.polynomial import chebyshev as C
- >>> C.chebmulx([1,2,3])
- array([ 1., 2.5, 3., 1.5, 2.])
- """
- # c is a trimmed copy
- [c] = pu.as_series([c])
- # The zero series needs special treatment
- if len(c) == 1 and c[0] == 0:
- return c
- prd = np.empty(len(c) + 1, dtype=c.dtype)
- prd[0] = c[0]*0
- prd[1] = c[0]
- if len(c) > 1:
- tmp = c[1:]/2
- prd[2:] = tmp
- prd[0:-2] += tmp
- return prd
- def chebmul(c1, c2):
- """
- Multiply one Chebyshev series by another.
- Returns the product of two Chebyshev series `c1` * `c2`. The arguments
- are sequences of coefficients, from lowest order "term" to highest,
- e.g., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.
- Parameters
- ----------
- c1, c2 : array_like
- 1-D arrays of Chebyshev series coefficients ordered from low to
- high.
- Returns
- -------
- out : ndarray
- Of Chebyshev series coefficients representing their product.
- See Also
- --------
- chebadd, chebsub, chebmulx, chebdiv, chebpow
- Notes
- -----
- In general, the (polynomial) product of two C-series results in terms
- that are not in the Chebyshev polynomial basis set. Thus, to express
- the product as a C-series, it is typically necessary to "reproject"
- the product onto said basis set, which typically produces
- "unintuitive live" (but correct) results; see Examples section below.
- Examples
- --------
- >>> from numpy.polynomial import chebyshev as C
- >>> c1 = (1,2,3)
- >>> c2 = (3,2,1)
- >>> C.chebmul(c1,c2) # multiplication requires "reprojection"
- array([ 6.5, 12. , 12. , 4. , 1.5])
- """
- # c1, c2 are trimmed copies
- [c1, c2] = pu.as_series([c1, c2])
- z1 = _cseries_to_zseries(c1)
- z2 = _cseries_to_zseries(c2)
- prd = _zseries_mul(z1, z2)
- ret = _zseries_to_cseries(prd)
- return pu.trimseq(ret)
- def chebdiv(c1, c2):
- """
- Divide one Chebyshev series by another.
- Returns the quotient-with-remainder of two Chebyshev series
- `c1` / `c2`. The arguments are sequences of coefficients from lowest
- order "term" to highest, e.g., [1,2,3] represents the series
- ``T_0 + 2*T_1 + 3*T_2``.
- Parameters
- ----------
- c1, c2 : array_like
- 1-D arrays of Chebyshev series coefficients ordered from low to
- high.
- Returns
- -------
- [quo, rem] : ndarrays
- Of Chebyshev series coefficients representing the quotient and
- remainder.
- See Also
- --------
- chebadd, chebsub, chemulx, chebmul, chebpow
- Notes
- -----
- In general, the (polynomial) division of one C-series by another
- results in quotient and remainder terms that are not in the Chebyshev
- polynomial basis set. Thus, to express these results as C-series, it
- is typically necessary to "reproject" the results onto said basis
- set, which typically produces "unintuitive" (but correct) results;
- see Examples section below.
- Examples
- --------
- >>> from numpy.polynomial import chebyshev as C
- >>> c1 = (1,2,3)
- >>> c2 = (3,2,1)
- >>> C.chebdiv(c1,c2) # quotient "intuitive," remainder not
- (array([ 3.]), array([-8., -4.]))
- >>> c2 = (0,1,2,3)
- >>> C.chebdiv(c2,c1) # neither "intuitive"
- (array([ 0., 2.]), array([-2., -4.]))
- """
- # c1, c2 are trimmed copies
- [c1, c2] = pu.as_series([c1, c2])
- if c2[-1] == 0:
- raise ZeroDivisionError()
- lc1 = len(c1)
- lc2 = len(c2)
- if lc1 < lc2:
- return c1[:1]*0, c1
- elif lc2 == 1:
- return c1/c2[-1], c1[:1]*0
- else:
- z1 = _cseries_to_zseries(c1)
- z2 = _cseries_to_zseries(c2)
- quo, rem = _zseries_div(z1, z2)
- quo = pu.trimseq(_zseries_to_cseries(quo))
- rem = pu.trimseq(_zseries_to_cseries(rem))
- return quo, rem
- def chebpow(c, pow, maxpower=16):
- """Raise a Chebyshev series to a power.
- Returns the Chebyshev series `c` raised to the power `pow`. The
- argument `c` is a sequence of coefficients ordered from low to high.
- i.e., [1,2,3] is the series ``T_0 + 2*T_1 + 3*T_2.``
- Parameters
- ----------
- c : array_like
- 1-D array of Chebyshev series coefficients ordered from low to
- high.
- pow : integer
- Power to which the series will be raised
- maxpower : integer, optional
- Maximum power allowed. This is mainly to limit growth of the series
- to unmanageable size. Default is 16
- Returns
- -------
- coef : ndarray
- Chebyshev series of power.
- See Also
- --------
- chebadd, chebsub, chebmulx, chebmul, chebdiv
- Examples
- --------
- >>> from numpy.polynomial import chebyshev as C
- >>> C.chebpow([1, 2, 3, 4], 2)
- array([15.5, 22. , 16. , 14. , 12.5, 12. , 8. ])
- """
- # c is a trimmed copy
- [c] = pu.as_series([c])
- power = int(pow)
- if power != pow or power < 0:
- raise ValueError("Power must be a non-negative integer.")
- elif maxpower is not None and power > maxpower:
- raise ValueError("Power is too large")
- elif power == 0:
- return np.array([1], dtype=c.dtype)
- elif power == 1:
- return c
- else:
- # This can be made more efficient by using powers of two
- # in the usual way.
- zs = _cseries_to_zseries(c)
- prd = zs
- for i in range(2, power + 1):
- prd = np.convolve(prd, zs)
- return _zseries_to_cseries(prd)
- def chebder(c, m=1, scl=1, axis=0):
- """
- Differentiate a Chebyshev series.
- Returns the Chebyshev series coefficients `c` differentiated `m` times
- along `axis`. At each iteration the result is multiplied by `scl` (the
- scaling factor is for use in a linear change of variable). The argument
- `c` is an array of coefficients from low to high degree along each
- axis, e.g., [1,2,3] represents the series ``1*T_0 + 2*T_1 + 3*T_2``
- while [[1,2],[1,2]] represents ``1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) +
- 2*T_0(x)*T_1(y) + 2*T_1(x)*T_1(y)`` if axis=0 is ``x`` and axis=1 is
- ``y``.
- Parameters
- ----------
- c : array_like
- Array of Chebyshev series coefficients. If c is multidimensional
- the different axis correspond to different variables with the
- degree in each axis given by the corresponding index.
- m : int, optional
- Number of derivatives taken, must be non-negative. (Default: 1)
- scl : scalar, optional
- Each differentiation is multiplied by `scl`. The end result is
- multiplication by ``scl**m``. This is for use in a linear change of
- variable. (Default: 1)
- axis : int, optional
- Axis over which the derivative is taken. (Default: 0).
- .. versionadded:: 1.7.0
- Returns
- -------
- der : ndarray
- Chebyshev series of the derivative.
- See Also
- --------
- chebint
- Notes
- -----
- In general, the result of differentiating a C-series needs to be
- "reprojected" onto the C-series basis set. Thus, typically, the
- result of this function is "unintuitive," albeit correct; see Examples
- section below.
- Examples
- --------
- >>> from numpy.polynomial import chebyshev as C
- >>> c = (1,2,3,4)
- >>> C.chebder(c)
- array([ 14., 12., 24.])
- >>> C.chebder(c,3)
- array([ 96.])
- >>> C.chebder(c,scl=-1)
- array([-14., -12., -24.])
- >>> C.chebder(c,2,-1)
- array([ 12., 96.])
- """
- c = np.array(c, ndmin=1, copy=1)
- if c.dtype.char in '?bBhHiIlLqQpP':
- c = c.astype(np.double)
- cnt, iaxis = [int(t) for t in [m, axis]]
- if cnt != m:
- raise ValueError("The order of derivation must be integer")
- if cnt < 0:
- raise ValueError("The order of derivation must be non-negative")
- if iaxis != axis:
- raise ValueError("The axis must be integer")
- iaxis = normalize_axis_index(iaxis, c.ndim)
- if cnt == 0:
- return c
- c = np.moveaxis(c, iaxis, 0)
- n = len(c)
- if cnt >= n:
- c = c[:1]*0
- else:
- for i in range(cnt):
- n = n - 1
- c *= scl
- der = np.empty((n,) + c.shape[1:], dtype=c.dtype)
- for j in range(n, 2, -1):
- der[j - 1] = (2*j)*c[j]
- c[j - 2] += (j*c[j])/(j - 2)
- if n > 1:
- der[1] = 4*c[2]
- der[0] = c[1]
- c = der
- c = np.moveaxis(c, 0, iaxis)
- return c
- def chebint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
- """
- Integrate a Chebyshev series.
- Returns the Chebyshev series coefficients `c` integrated `m` times from
- `lbnd` along `axis`. At each iteration the resulting series is
- **multiplied** by `scl` and an integration constant, `k`, is added.
- The scaling factor is for use in a linear change of variable. ("Buyer
- beware": note that, depending on what one is doing, one may want `scl`
- to be the reciprocal of what one might expect; for more information,
- see the Notes section below.) The argument `c` is an array of
- coefficients from low to high degree along each axis, e.g., [1,2,3]
- represents the series ``T_0 + 2*T_1 + 3*T_2`` while [[1,2],[1,2]]
- represents ``1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) + 2*T_0(x)*T_1(y) +
- 2*T_1(x)*T_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``.
- Parameters
- ----------
- c : array_like
- Array of Chebyshev series coefficients. If c is multidimensional
- the different axis correspond to different variables with the
- degree in each axis given by the corresponding index.
- m : int, optional
- Order of integration, must be positive. (Default: 1)
- k : {[], list, scalar}, optional
- Integration constant(s). The value of the first integral at zero
- is the first value in the list, the value of the second integral
- at zero is the second value, etc. If ``k == []`` (the default),
- all constants are set to zero. If ``m == 1``, a single scalar can
- be given instead of a list.
- lbnd : scalar, optional
- The lower bound of the integral. (Default: 0)
- scl : scalar, optional
- Following each integration the result is *multiplied* by `scl`
- before the integration constant is added. (Default: 1)
- axis : int, optional
- Axis over which the integral is taken. (Default: 0).
- .. versionadded:: 1.7.0
- Returns
- -------
- S : ndarray
- C-series coefficients of the integral.
- Raises
- ------
- ValueError
- If ``m < 1``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or
- ``np.ndim(scl) != 0``.
- See Also
- --------
- chebder
- Notes
- -----
- Note that the result of each integration is *multiplied* by `scl`.
- Why is this important to note? Say one is making a linear change of
- variable :math:`u = ax + b` in an integral relative to `x`. Then
- :math:`dx = du/a`, so one will need to set `scl` equal to
- :math:`1/a`- perhaps not what one would have first thought.
- Also note that, in general, the result of integrating a C-series needs
- to be "reprojected" onto the C-series basis set. Thus, typically,
- the result of this function is "unintuitive," albeit correct; see
- Examples section below.
- Examples
- --------
- >>> from numpy.polynomial import chebyshev as C
- >>> c = (1,2,3)
- >>> C.chebint(c)
- array([ 0.5, -0.5, 0.5, 0.5])
- >>> C.chebint(c,3)
- array([ 0.03125 , -0.1875 , 0.04166667, -0.05208333, 0.01041667,
- 0.00625 ])
- >>> C.chebint(c, k=3)
- array([ 3.5, -0.5, 0.5, 0.5])
- >>> C.chebint(c,lbnd=-2)
- array([ 8.5, -0.5, 0.5, 0.5])
- >>> C.chebint(c,scl=-2)
- array([-1., 1., -1., -1.])
- """
- c = np.array(c, ndmin=1, copy=1)
- if c.dtype.char in '?bBhHiIlLqQpP':
- c = c.astype(np.double)
- if not np.iterable(k):
- k = [k]
- cnt, iaxis = [int(t) for t in [m, axis]]
- if cnt != m:
- raise ValueError("The order of integration must be integer")
- if cnt < 0:
- raise ValueError("The order of integration must be non-negative")
- if len(k) > cnt:
- raise ValueError("Too many integration constants")
- if np.ndim(lbnd) != 0:
- raise ValueError("lbnd must be a scalar.")
- if np.ndim(scl) != 0:
- raise ValueError("scl must be a scalar.")
- if iaxis != axis:
- raise ValueError("The axis must be integer")
- iaxis = normalize_axis_index(iaxis, c.ndim)
- if cnt == 0:
- return c
- c = np.moveaxis(c, iaxis, 0)
- k = list(k) + [0]*(cnt - len(k))
- for i in range(cnt):
- n = len(c)
- c *= scl
- if n == 1 and np.all(c[0] == 0):
- c[0] += k[i]
- else:
- tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype)
- tmp[0] = c[0]*0
- tmp[1] = c[0]
- if n > 1:
- tmp[2] = c[1]/4
- for j in range(2, n):
- t = c[j]/(2*j + 1) # FIXME: t never used
- tmp[j + 1] = c[j]/(2*(j + 1))
- tmp[j - 1] -= c[j]/(2*(j - 1))
- tmp[0] += k[i] - chebval(lbnd, tmp)
- c = tmp
- c = np.moveaxis(c, 0, iaxis)
- return c
- def chebval(x, c, tensor=True):
- """
- Evaluate a Chebyshev series at points x.
- If `c` is of length `n + 1`, this function returns the value:
- .. math:: p(x) = c_0 * T_0(x) + c_1 * T_1(x) + ... + c_n * T_n(x)
- The parameter `x` is converted to an array only if it is a tuple or a
- list, otherwise it is treated as a scalar. In either case, either `x`
- or its elements must support multiplication and addition both with
- themselves and with the elements of `c`.
- If `c` is a 1-D array, then `p(x)` will have the same shape as `x`. If
- `c` is multidimensional, then the shape of the result depends on the
- value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
- x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
- scalars have shape (,).
- Trailing zeros in the coefficients will be used in the evaluation, so
- they should be avoided if efficiency is a concern.
- Parameters
- ----------
- x : array_like, compatible object
- If `x` is a list or tuple, it is converted to an ndarray, otherwise
- it is left unchanged and treated as a scalar. In either case, `x`
- or its elements must support addition and multiplication with
- with themselves and with the elements of `c`.
- c : array_like
- Array of coefficients ordered so that the coefficients for terms of
- degree n are contained in c[n]. If `c` is multidimensional the
- remaining indices enumerate multiple polynomials. In the two
- dimensional case the coefficients may be thought of as stored in
- the columns of `c`.
- tensor : boolean, optional
- If True, the shape of the coefficient array is extended with ones
- on the right, one for each dimension of `x`. Scalars have dimension 0
- for this action. The result is that every column of coefficients in
- `c` is evaluated for every element of `x`. If False, `x` is broadcast
- over the columns of `c` for the evaluation. This keyword is useful
- when `c` is multidimensional. The default value is True.
- .. versionadded:: 1.7.0
- Returns
- -------
- values : ndarray, algebra_like
- The shape of the return value is described above.
- See Also
- --------
- chebval2d, chebgrid2d, chebval3d, chebgrid3d
- Notes
- -----
- The evaluation uses Clenshaw recursion, aka synthetic division.
- Examples
- --------
- """
- c = np.array(c, ndmin=1, copy=1)
- if c.dtype.char in '?bBhHiIlLqQpP':
- c = c.astype(np.double)
- if isinstance(x, (tuple, list)):
- x = np.asarray(x)
- if isinstance(x, np.ndarray) and tensor:
- c = c.reshape(c.shape + (1,)*x.ndim)
- if len(c) == 1:
- c0 = c[0]
- c1 = 0
- elif len(c) == 2:
- c0 = c[0]
- c1 = c[1]
- else:
- x2 = 2*x
- c0 = c[-2]
- c1 = c[-1]
- for i in range(3, len(c) + 1):
- tmp = c0
- c0 = c[-i] - c1
- c1 = tmp + c1*x2
- return c0 + c1*x
- def chebval2d(x, y, c):
- """
- Evaluate a 2-D Chebyshev series at points (x, y).
- This function returns the values:
- .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * T_i(x) * T_j(y)
- The parameters `x` and `y` are converted to arrays only if they are
- tuples or a lists, otherwise they are treated as a scalars and they
- must have the same shape after conversion. In either case, either `x`
- and `y` or their elements must support multiplication and addition both
- with themselves and with the elements of `c`.
- If `c` is a 1-D array a one is implicitly appended to its shape to make
- it 2-D. The shape of the result will be c.shape[2:] + x.shape.
- Parameters
- ----------
- x, y : array_like, compatible objects
- The two dimensional series is evaluated at the points `(x, y)`,
- where `x` and `y` must have the same shape. If `x` or `y` is a list
- or tuple, it is first converted to an ndarray, otherwise it is left
- unchanged and if it isn't an ndarray it is treated as a scalar.
- c : array_like
- Array of coefficients ordered so that the coefficient of the term
- of multi-degree i,j is contained in ``c[i,j]``. If `c` has
- dimension greater than 2 the remaining indices enumerate multiple
- sets of coefficients.
- Returns
- -------
- values : ndarray, compatible object
- The values of the two dimensional Chebyshev series at points formed
- from pairs of corresponding values from `x` and `y`.
- See Also
- --------
- chebval, chebgrid2d, chebval3d, chebgrid3d
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- try:
- x, y = np.array((x, y), copy=0)
- except Exception:
- raise ValueError('x, y are incompatible')
- c = chebval(x, c)
- c = chebval(y, c, tensor=False)
- return c
- def chebgrid2d(x, y, c):
- """
- Evaluate a 2-D Chebyshev series on the Cartesian product of x and y.
- This function returns the values:
- .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * T_i(a) * T_j(b),
- where the points `(a, b)` consist of all pairs formed by taking
- `a` from `x` and `b` from `y`. The resulting points form a grid with
- `x` in the first dimension and `y` in the second.
- The parameters `x` and `y` are converted to arrays only if they are
- tuples or a lists, otherwise they are treated as a scalars. In either
- case, either `x` and `y` or their elements must support multiplication
- and addition both with themselves and with the elements of `c`.
- If `c` has fewer than two dimensions, ones are implicitly appended to
- its shape to make it 2-D. The shape of the result will be c.shape[2:] +
- x.shape + y.shape.
- Parameters
- ----------
- x, y : array_like, compatible objects
- The two dimensional series is evaluated at the points in the
- Cartesian product of `x` and `y`. If `x` or `y` is a list or
- tuple, it is first converted to an ndarray, otherwise it is left
- unchanged and, if it isn't an ndarray, it is treated as a scalar.
- c : array_like
- Array of coefficients ordered so that the coefficient of the term of
- multi-degree i,j is contained in `c[i,j]`. If `c` has dimension
- greater than two the remaining indices enumerate multiple sets of
- coefficients.
- Returns
- -------
- values : ndarray, compatible object
- The values of the two dimensional Chebyshev series at points in the
- Cartesian product of `x` and `y`.
- See Also
- --------
- chebval, chebval2d, chebval3d, chebgrid3d
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- c = chebval(x, c)
- c = chebval(y, c)
- return c
- def chebval3d(x, y, z, c):
- """
- Evaluate a 3-D Chebyshev series at points (x, y, z).
- This function returns the values:
- .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * T_i(x) * T_j(y) * T_k(z)
- The parameters `x`, `y`, and `z` are converted to arrays only if
- they are tuples or a lists, otherwise they are treated as a scalars and
- they must have the same shape after conversion. In either case, either
- `x`, `y`, and `z` or their elements must support multiplication and
- addition both with themselves and with the elements of `c`.
- If `c` has fewer than 3 dimensions, ones are implicitly appended to its
- shape to make it 3-D. The shape of the result will be c.shape[3:] +
- x.shape.
- Parameters
- ----------
- x, y, z : array_like, compatible object
- The three dimensional series is evaluated at the points
- `(x, y, z)`, where `x`, `y`, and `z` must have the same shape. If
- any of `x`, `y`, or `z` is a list or tuple, it is first converted
- to an ndarray, otherwise it is left unchanged and if it isn't an
- ndarray it is treated as a scalar.
- c : array_like
- Array of coefficients ordered so that the coefficient of the term of
- multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
- greater than 3 the remaining indices enumerate multiple sets of
- coefficients.
- Returns
- -------
- values : ndarray, compatible object
- The values of the multidimensional polynomial on points formed with
- triples of corresponding values from `x`, `y`, and `z`.
- See Also
- --------
- chebval, chebval2d, chebgrid2d, chebgrid3d
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- try:
- x, y, z = np.array((x, y, z), copy=0)
- except Exception:
- raise ValueError('x, y, z are incompatible')
- c = chebval(x, c)
- c = chebval(y, c, tensor=False)
- c = chebval(z, c, tensor=False)
- return c
- def chebgrid3d(x, y, z, c):
- """
- Evaluate a 3-D Chebyshev series on the Cartesian product of x, y, and z.
- This function returns the values:
- .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * T_i(a) * T_j(b) * T_k(c)
- where the points `(a, b, c)` consist of all triples formed by taking
- `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
- a grid with `x` in the first dimension, `y` in the second, and `z` in
- the third.
- The parameters `x`, `y`, and `z` are converted to arrays only if they
- are tuples or a lists, otherwise they are treated as a scalars. In
- either case, either `x`, `y`, and `z` or their elements must support
- multiplication and addition both with themselves and with the elements
- of `c`.
- If `c` has fewer than three dimensions, ones are implicitly appended to
- its shape to make it 3-D. The shape of the result will be c.shape[3:] +
- x.shape + y.shape + z.shape.
- Parameters
- ----------
- x, y, z : array_like, compatible objects
- The three dimensional series is evaluated at the points in the
- Cartesian product of `x`, `y`, and `z`. If `x`,`y`, or `z` is a
- list or tuple, it is first converted to an ndarray, otherwise it is
- left unchanged and, if it isn't an ndarray, it is treated as a
- scalar.
- c : array_like
- Array of coefficients ordered so that the coefficients for terms of
- degree i,j are contained in ``c[i,j]``. If `c` has dimension
- greater than two the remaining indices enumerate multiple sets of
- coefficients.
- Returns
- -------
- values : ndarray, compatible object
- The values of the two dimensional polynomial at points in the Cartesian
- product of `x` and `y`.
- See Also
- --------
- chebval, chebval2d, chebgrid2d, chebval3d
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- c = chebval(x, c)
- c = chebval(y, c)
- c = chebval(z, c)
- return c
- def chebvander(x, deg):
- """Pseudo-Vandermonde matrix of given degree.
- Returns the pseudo-Vandermonde matrix of degree `deg` and sample points
- `x`. The pseudo-Vandermonde matrix is defined by
- .. math:: V[..., i] = T_i(x),
- where `0 <= i <= deg`. The leading indices of `V` index the elements of
- `x` and the last index is the degree of the Chebyshev polynomial.
- If `c` is a 1-D array of coefficients of length `n + 1` and `V` is the
- matrix ``V = chebvander(x, n)``, then ``np.dot(V, c)`` and
- ``chebval(x, c)`` are the same up to roundoff. This equivalence is
- useful both for least squares fitting and for the evaluation of a large
- number of Chebyshev series of the same degree and sample points.
- Parameters
- ----------
- x : array_like
- Array of points. The dtype is converted to float64 or complex128
- depending on whether any of the elements are complex. If `x` is
- scalar it is converted to a 1-D array.
- deg : int
- Degree of the resulting matrix.
- Returns
- -------
- vander : ndarray
- The pseudo Vandermonde matrix. The shape of the returned matrix is
- ``x.shape + (deg + 1,)``, where The last index is the degree of the
- corresponding Chebyshev polynomial. The dtype will be the same as
- the converted `x`.
- """
- ideg = int(deg)
- if ideg != deg:
- raise ValueError("deg must be integer")
- if ideg < 0:
- raise ValueError("deg must be non-negative")
- x = np.array(x, copy=0, ndmin=1) + 0.0
- dims = (ideg + 1,) + x.shape
- dtyp = x.dtype
- v = np.empty(dims, dtype=dtyp)
- # Use forward recursion to generate the entries.
- v[0] = x*0 + 1
- if ideg > 0:
- x2 = 2*x
- v[1] = x
- for i in range(2, ideg + 1):
- v[i] = v[i-1]*x2 - v[i-2]
- return np.moveaxis(v, 0, -1)
- def chebvander2d(x, y, deg):
- """Pseudo-Vandermonde matrix of given degrees.
- Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
- points `(x, y)`. The pseudo-Vandermonde matrix is defined by
- .. math:: V[..., (deg[1] + 1)*i + j] = T_i(x) * T_j(y),
- where `0 <= i <= deg[0]` and `0 <= j <= deg[1]`. The leading indices of
- `V` index the points `(x, y)` and the last index encodes the degrees of
- the Chebyshev polynomials.
- If ``V = chebvander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
- correspond to the elements of a 2-D coefficient array `c` of shape
- (xdeg + 1, ydeg + 1) in the order
- .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...
- and ``np.dot(V, c.flat)`` and ``chebval2d(x, y, c)`` will be the same
- up to roundoff. This equivalence is useful both for least squares
- fitting and for the evaluation of a large number of 2-D Chebyshev
- series of the same degrees and sample points.
- Parameters
- ----------
- x, y : array_like
- Arrays of point coordinates, all of the same shape. The dtypes
- will be converted to either float64 or complex128 depending on
- whether any of the elements are complex. Scalars are converted to
- 1-D arrays.
- deg : list of ints
- List of maximum degrees of the form [x_deg, y_deg].
- Returns
- -------
- vander2d : ndarray
- The shape of the returned matrix is ``x.shape + (order,)``, where
- :math:`order = (deg[0]+1)*(deg([1]+1)`. The dtype will be the same
- as the converted `x` and `y`.
- See Also
- --------
- chebvander, chebvander3d. chebval2d, chebval3d
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- ideg = [int(d) for d in deg]
- is_valid = [id == d and id >= 0 for id, d in zip(ideg, deg)]
- if is_valid != [1, 1]:
- raise ValueError("degrees must be non-negative integers")
- degx, degy = ideg
- x, y = np.array((x, y), copy=0) + 0.0
- vx = chebvander(x, degx)
- vy = chebvander(y, degy)
- v = vx[..., None]*vy[..., None,:]
- return v.reshape(v.shape[:-2] + (-1,))
- def chebvander3d(x, y, z, deg):
- """Pseudo-Vandermonde matrix of given degrees.
- Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
- points `(x, y, z)`. If `l, m, n` are the given degrees in `x, y, z`,
- then The pseudo-Vandermonde matrix is defined by
- .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = T_i(x)*T_j(y)*T_k(z),
- where `0 <= i <= l`, `0 <= j <= m`, and `0 <= j <= n`. The leading
- indices of `V` index the points `(x, y, z)` and the last index encodes
- the degrees of the Chebyshev polynomials.
- If ``V = chebvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
- of `V` correspond to the elements of a 3-D coefficient array `c` of
- shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order
- .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...
- and ``np.dot(V, c.flat)`` and ``chebval3d(x, y, z, c)`` will be the
- same up to roundoff. This equivalence is useful both for least squares
- fitting and for the evaluation of a large number of 3-D Chebyshev
- series of the same degrees and sample points.
- Parameters
- ----------
- x, y, z : array_like
- Arrays of point coordinates, all of the same shape. The dtypes will
- be converted to either float64 or complex128 depending on whether
- any of the elements are complex. Scalars are converted to 1-D
- arrays.
- deg : list of ints
- List of maximum degrees of the form [x_deg, y_deg, z_deg].
- Returns
- -------
- vander3d : ndarray
- The shape of the returned matrix is ``x.shape + (order,)``, where
- :math:`order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)`. The dtype will
- be the same as the converted `x`, `y`, and `z`.
- See Also
- --------
- chebvander, chebvander3d. chebval2d, chebval3d
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- ideg = [int(d) for d in deg]
- is_valid = [id == d and id >= 0 for id, d in zip(ideg, deg)]
- if is_valid != [1, 1, 1]:
- raise ValueError("degrees must be non-negative integers")
- degx, degy, degz = ideg
- x, y, z = np.array((x, y, z), copy=0) + 0.0
- vx = chebvander(x, degx)
- vy = chebvander(y, degy)
- vz = chebvander(z, degz)
- v = vx[..., None, None]*vy[..., None,:, None]*vz[..., None, None,:]
- return v.reshape(v.shape[:-3] + (-1,))
- def chebfit(x, y, deg, rcond=None, full=False, w=None):
- """
- Least squares fit of Chebyshev series to data.
- Return the coefficients of a Chebyshev series of degree `deg` that is the
- least squares fit to the data values `y` given at points `x`. If `y` is
- 1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple
- fits are done, one for each column of `y`, and the resulting
- coefficients are stored in the corresponding columns of a 2-D return.
- The fitted polynomial(s) are in the form
- .. math:: p(x) = c_0 + c_1 * T_1(x) + ... + c_n * T_n(x),
- where `n` is `deg`.
- Parameters
- ----------
- x : array_like, shape (M,)
- x-coordinates of the M sample points ``(x[i], y[i])``.
- y : array_like, shape (M,) or (M, K)
- y-coordinates of the sample points. Several data sets of sample
- points sharing the same x-coordinates can be fitted at once by
- passing in a 2D-array that contains one dataset per column.
- deg : int or 1-D array_like
- Degree(s) of the fitting polynomials. If `deg` is a single integer,
- all terms up to and including the `deg`'th term are included in the
- fit. For NumPy versions >= 1.11.0 a list of integers specifying the
- degrees of the terms to include may be used instead.
- rcond : float, optional
- Relative condition number of the fit. Singular values smaller than
- this relative to the largest singular value will be ignored. The
- default value is len(x)*eps, where eps is the relative precision of
- the float type, about 2e-16 in most cases.
- full : bool, optional
- Switch determining nature of return value. When it is False (the
- default) just the coefficients are returned, when True diagnostic
- information from the singular value decomposition is also returned.
- w : array_like, shape (`M`,), optional
- Weights. If not None, the contribution of each point
- ``(x[i],y[i])`` to the fit is weighted by `w[i]`. Ideally the
- weights are chosen so that the errors of the products ``w[i]*y[i]``
- all have the same variance. The default value is None.
- .. versionadded:: 1.5.0
- Returns
- -------
- coef : ndarray, shape (M,) or (M, K)
- Chebyshev coefficients ordered from low to high. If `y` was 2-D,
- the coefficients for the data in column k of `y` are in column
- `k`.
- [residuals, rank, singular_values, rcond] : list
- These values are only returned if `full` = True
- resid -- sum of squared residuals of the least squares fit
- rank -- the numerical rank of the scaled Vandermonde matrix
- sv -- singular values of the scaled Vandermonde matrix
- rcond -- value of `rcond`.
- For more details, see `linalg.lstsq`.
- Warns
- -----
- RankWarning
- The rank of the coefficient matrix in the least-squares fit is
- deficient. The warning is only raised if `full` = False. The
- warnings can be turned off by
- >>> import warnings
- >>> warnings.simplefilter('ignore', RankWarning)
- See Also
- --------
- polyfit, legfit, lagfit, hermfit, hermefit
- chebval : Evaluates a Chebyshev series.
- chebvander : Vandermonde matrix of Chebyshev series.
- chebweight : Chebyshev weight function.
- linalg.lstsq : Computes a least-squares fit from the matrix.
- scipy.interpolate.UnivariateSpline : Computes spline fits.
- Notes
- -----
- The solution is the coefficients of the Chebyshev series `p` that
- minimizes the sum of the weighted squared errors
- .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,
- where :math:`w_j` are the weights. This problem is solved by setting up
- as the (typically) overdetermined matrix equation
- .. math:: V(x) * c = w * y,
- where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the
- coefficients to be solved for, `w` are the weights, and `y` are the
- observed values. This equation is then solved using the singular value
- decomposition of `V`.
- If some of the singular values of `V` are so small that they are
- neglected, then a `RankWarning` will be issued. This means that the
- coefficient values may be poorly determined. Using a lower order fit
- will usually get rid of the warning. The `rcond` parameter can also be
- set to a value smaller than its default, but the resulting fit may be
- spurious and have large contributions from roundoff error.
- Fits using Chebyshev series are usually better conditioned than fits
- using power series, but much can depend on the distribution of the
- sample points and the smoothness of the data. If the quality of the fit
- is inadequate splines may be a good alternative.
- References
- ----------
- .. [1] Wikipedia, "Curve fitting",
- https://en.wikipedia.org/wiki/Curve_fitting
- Examples
- --------
- """
- x = np.asarray(x) + 0.0
- y = np.asarray(y) + 0.0
- deg = np.asarray(deg)
- # check arguments.
- if deg.ndim > 1 or deg.dtype.kind not in 'iu' or deg.size == 0:
- raise TypeError("deg must be an int or non-empty 1-D array of int")
- if deg.min() < 0:
- raise ValueError("expected deg >= 0")
- if x.ndim != 1:
- raise TypeError("expected 1D vector for x")
- if x.size == 0:
- raise TypeError("expected non-empty vector for x")
- if y.ndim < 1 or y.ndim > 2:
- raise TypeError("expected 1D or 2D array for y")
- if len(x) != len(y):
- raise TypeError("expected x and y to have same length")
- if deg.ndim == 0:
- lmax = deg
- order = lmax + 1
- van = chebvander(x, lmax)
- else:
- deg = np.sort(deg)
- lmax = deg[-1]
- order = len(deg)
- van = chebvander(x, lmax)[:, deg]
- # set up the least squares matrices in transposed form
- lhs = van.T
- rhs = y.T
- if w is not None:
- w = np.asarray(w) + 0.0
- if w.ndim != 1:
- raise TypeError("expected 1D vector for w")
- if len(x) != len(w):
- raise TypeError("expected x and w to have same length")
- # apply weights. Don't use inplace operations as they
- # can cause problems with NA.
- lhs = lhs * w
- rhs = rhs * w
- # set rcond
- if rcond is None:
- rcond = len(x)*np.finfo(x.dtype).eps
- # Determine the norms of the design matrix columns.
- if issubclass(lhs.dtype.type, np.complexfloating):
- scl = np.sqrt((np.square(lhs.real) + np.square(lhs.imag)).sum(1))
- else:
- scl = np.sqrt(np.square(lhs).sum(1))
- scl[scl == 0] = 1
- # Solve the least squares problem.
- c, resids, rank, s = la.lstsq(lhs.T/scl, rhs.T, rcond)
- c = (c.T/scl).T
- # Expand c to include non-fitted coefficients which are set to zero
- if deg.ndim > 0:
- if c.ndim == 2:
- cc = np.zeros((lmax + 1, c.shape[1]), dtype=c.dtype)
- else:
- cc = np.zeros(lmax + 1, dtype=c.dtype)
- cc[deg] = c
- c = cc
- # warn on rank reduction
- if rank != order and not full:
- msg = "The fit may be poorly conditioned"
- warnings.warn(msg, pu.RankWarning, stacklevel=2)
- if full:
- return c, [resids, rank, s, rcond]
- else:
- return c
- def chebcompanion(c):
- """Return the scaled companion matrix of c.
- The basis polynomials are scaled so that the companion matrix is
- symmetric when `c` is a Chebyshev basis polynomial. This provides
- better eigenvalue estimates than the unscaled case and for basis
- polynomials the eigenvalues are guaranteed to be real if
- `numpy.linalg.eigvalsh` is used to obtain them.
- Parameters
- ----------
- c : array_like
- 1-D array of Chebyshev series coefficients ordered from low to high
- degree.
- Returns
- -------
- mat : ndarray
- Scaled companion matrix of dimensions (deg, deg).
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- # c is a trimmed copy
- [c] = pu.as_series([c])
- if len(c) < 2:
- raise ValueError('Series must have maximum degree of at least 1.')
- if len(c) == 2:
- return np.array([[-c[0]/c[1]]])
- n = len(c) - 1
- mat = np.zeros((n, n), dtype=c.dtype)
- scl = np.array([1.] + [np.sqrt(.5)]*(n-1))
- top = mat.reshape(-1)[1::n+1]
- bot = mat.reshape(-1)[n::n+1]
- top[0] = np.sqrt(.5)
- top[1:] = 1/2
- bot[...] = top
- mat[:, -1] -= (c[:-1]/c[-1])*(scl/scl[-1])*.5
- return mat
- def chebroots(c):
- """
- Compute the roots of a Chebyshev series.
- Return the roots (a.k.a. "zeros") of the polynomial
- .. math:: p(x) = \\sum_i c[i] * T_i(x).
- Parameters
- ----------
- c : 1-D array_like
- 1-D array of coefficients.
- Returns
- -------
- out : ndarray
- Array of the roots of the series. If all the roots are real,
- then `out` is also real, otherwise it is complex.
- See Also
- --------
- polyroots, legroots, lagroots, hermroots, hermeroots
- Notes
- -----
- The root estimates are obtained as the eigenvalues of the companion
- matrix, Roots far from the origin of the complex plane may have large
- errors due to the numerical instability of the series for such
- values. Roots with multiplicity greater than 1 will also show larger
- errors as the value of the series near such points is relatively
- insensitive to errors in the roots. Isolated roots near the origin can
- be improved by a few iterations of Newton's method.
- The Chebyshev series basis polynomials aren't powers of `x` so the
- results of this function may seem unintuitive.
- Examples
- --------
- >>> import numpy.polynomial.chebyshev as cheb
- >>> cheb.chebroots((-1, 1,-1, 1)) # T3 - T2 + T1 - T0 has real roots
- array([ -5.00000000e-01, 2.60860684e-17, 1.00000000e+00])
- """
- # c is a trimmed copy
- [c] = pu.as_series([c])
- if len(c) < 2:
- return np.array([], dtype=c.dtype)
- if len(c) == 2:
- return np.array([-c[0]/c[1]])
- m = chebcompanion(c)
- r = la.eigvals(m)
- r.sort()
- return r
- def chebinterpolate(func, deg, args=()):
- """Interpolate a function at the Chebyshev points of the first kind.
- Returns the Chebyshev series that interpolates `func` at the Chebyshev
- points of the first kind in the interval [-1, 1]. The interpolating
- series tends to a minmax approximation to `func` with increasing `deg`
- if the function is continuous in the interval.
- .. versionadded:: 1.14.0
- Parameters
- ----------
- func : function
- The function to be approximated. It must be a function of a single
- variable of the form ``f(x, a, b, c...)``, where ``a, b, c...`` are
- extra arguments passed in the `args` parameter.
- deg : int
- Degree of the interpolating polynomial
- args : tuple, optional
- Extra arguments to be used in the function call. Default is no extra
- arguments.
- Returns
- -------
- coef : ndarray, shape (deg + 1,)
- Chebyshev coefficients of the interpolating series ordered from low to
- high.
- Examples
- --------
- >>> import numpy.polynomial.chebyshev as C
- >>> C.chebfromfunction(lambda x: np.tanh(x) + 0.5, 8)
- array([ 5.00000000e-01, 8.11675684e-01, -9.86864911e-17,
- -5.42457905e-02, -2.71387850e-16, 4.51658839e-03,
- 2.46716228e-17, -3.79694221e-04, -3.26899002e-16])
- Notes
- -----
- The Chebyshev polynomials used in the interpolation are orthogonal when
- sampled at the Chebyshev points of the first kind. If it is desired to
- constrain some of the coefficients they can simply be set to the desired
- value after the interpolation, no new interpolation or fit is needed. This
- is especially useful if it is known apriori that some of coefficients are
- zero. For instance, if the function is even then the coefficients of the
- terms of odd degree in the result can be set to zero.
- """
- deg = np.asarray(deg)
- # check arguments.
- if deg.ndim > 0 or deg.dtype.kind not in 'iu' or deg.size == 0:
- raise TypeError("deg must be an int")
- if deg < 0:
- raise ValueError("expected deg >= 0")
- order = deg + 1
- xcheb = chebpts1(order)
- yfunc = func(xcheb, *args)
- m = chebvander(xcheb, deg)
- c = np.dot(m.T, yfunc)
- c[0] /= order
- c[1:] /= 0.5*order
- return c
- def chebgauss(deg):
- """
- Gauss-Chebyshev quadrature.
- Computes the sample points and weights for Gauss-Chebyshev quadrature.
- These sample points and weights will correctly integrate polynomials of
- degree :math:`2*deg - 1` or less over the interval :math:`[-1, 1]` with
- the weight function :math:`f(x) = 1/\\sqrt{1 - x^2}`.
- Parameters
- ----------
- deg : int
- Number of sample points and weights. It must be >= 1.
- Returns
- -------
- x : ndarray
- 1-D ndarray containing the sample points.
- y : ndarray
- 1-D ndarray containing the weights.
- Notes
- -----
- .. versionadded:: 1.7.0
- The results have only been tested up to degree 100, higher degrees may
- be problematic. For Gauss-Chebyshev there are closed form solutions for
- the sample points and weights. If n = `deg`, then
- .. math:: x_i = \\cos(\\pi (2 i - 1) / (2 n))
- .. math:: w_i = \\pi / n
- """
- ideg = int(deg)
- if ideg != deg or ideg < 1:
- raise ValueError("deg must be a non-negative integer")
- x = np.cos(np.pi * np.arange(1, 2*ideg, 2) / (2.0*ideg))
- w = np.ones(ideg)*(np.pi/ideg)
- return x, w
- def chebweight(x):
- """
- The weight function of the Chebyshev polynomials.
- The weight function is :math:`1/\\sqrt{1 - x^2}` and the interval of
- integration is :math:`[-1, 1]`. The Chebyshev polynomials are
- orthogonal, but not normalized, with respect to this weight function.
- Parameters
- ----------
- x : array_like
- Values at which the weight function will be computed.
- Returns
- -------
- w : ndarray
- The weight function at `x`.
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- w = 1./(np.sqrt(1. + x) * np.sqrt(1. - x))
- return w
- def chebpts1(npts):
- """
- Chebyshev points of the first kind.
- The Chebyshev points of the first kind are the points ``cos(x)``,
- where ``x = [pi*(k + .5)/npts for k in range(npts)]``.
- Parameters
- ----------
- npts : int
- Number of sample points desired.
- Returns
- -------
- pts : ndarray
- The Chebyshev points of the first kind.
- See Also
- --------
- chebpts2
- Notes
- -----
- .. versionadded:: 1.5.0
- """
- _npts = int(npts)
- if _npts != npts:
- raise ValueError("npts must be integer")
- if _npts < 1:
- raise ValueError("npts must be >= 1")
- x = np.linspace(-np.pi, 0, _npts, endpoint=False) + np.pi/(2*_npts)
- return np.cos(x)
- def chebpts2(npts):
- """
- Chebyshev points of the second kind.
- The Chebyshev points of the second kind are the points ``cos(x)``,
- where ``x = [pi*k/(npts - 1) for k in range(npts)]``.
- Parameters
- ----------
- npts : int
- Number of sample points desired.
- Returns
- -------
- pts : ndarray
- The Chebyshev points of the second kind.
- Notes
- -----
- .. versionadded:: 1.5.0
- """
- _npts = int(npts)
- if _npts != npts:
- raise ValueError("npts must be integer")
- if _npts < 2:
- raise ValueError("npts must be >= 2")
- x = np.linspace(-np.pi, 0, _npts)
- return np.cos(x)
- #
- # Chebyshev series class
- #
- class Chebyshev(ABCPolyBase):
- """A Chebyshev series class.
- The Chebyshev class provides the standard Python numerical methods
- '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
- methods listed below.
- Parameters
- ----------
- coef : array_like
- Chebyshev coefficients in order of increasing degree, i.e.,
- ``(1, 2, 3)`` gives ``1*T_0(x) + 2*T_1(x) + 3*T_2(x)``.
- domain : (2,) array_like, optional
- Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
- to the interval ``[window[0], window[1]]`` by shifting and scaling.
- The default value is [-1, 1].
- window : (2,) array_like, optional
- Window, see `domain` for its use. The default value is [-1, 1].
- .. versionadded:: 1.6.0
- """
- # Virtual Functions
- _add = staticmethod(chebadd)
- _sub = staticmethod(chebsub)
- _mul = staticmethod(chebmul)
- _div = staticmethod(chebdiv)
- _pow = staticmethod(chebpow)
- _val = staticmethod(chebval)
- _int = staticmethod(chebint)
- _der = staticmethod(chebder)
- _fit = staticmethod(chebfit)
- _line = staticmethod(chebline)
- _roots = staticmethod(chebroots)
- _fromroots = staticmethod(chebfromroots)
- @classmethod
- def interpolate(cls, func, deg, domain=None, args=()):
- """Interpolate a function at the Chebyshev points of the first kind.
- Returns the series that interpolates `func` at the Chebyshev points of
- the first kind scaled and shifted to the `domain`. The resulting series
- tends to a minmax approximation of `func` when the function is
- continuous in the domain.
- .. versionadded:: 1.14.0
- Parameters
- ----------
- func : function
- The function to be interpolated. It must be a function of a single
- variable of the form ``f(x, a, b, c...)``, where ``a, b, c...`` are
- extra arguments passed in the `args` parameter.
- deg : int
- Degree of the interpolating polynomial.
- domain : {None, [beg, end]}, optional
- Domain over which `func` is interpolated. The default is None, in
- which case the domain is [-1, 1].
- args : tuple, optional
- Extra arguments to be used in the function call. Default is no
- extra arguments.
- Returns
- -------
- polynomial : Chebyshev instance
- Interpolating Chebyshev instance.
- Notes
- -----
- See `numpy.polynomial.chebfromfunction` for more details.
- """
- if domain is None:
- domain = cls.domain
- xfunc = lambda x: func(pu.mapdomain(x, cls.window, domain), *args)
- coef = chebinterpolate(xfunc, deg)
- return cls(coef, domain=domain)
- # Virtual properties
- nickname = 'cheb'
- domain = np.array(chebdomain)
- window = np.array(chebdomain)
- basis_name = 'T'
|