123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283 |
- """ parquet compat """
- from distutils.version import LooseVersion
- from warnings import catch_warnings
- from pandas.compat import string_types
- from pandas.errors import AbstractMethodError
- from pandas import DataFrame, get_option
- from pandas.io.common import get_filepath_or_buffer, is_s3_url
- def get_engine(engine):
- """ return our implementation """
- if engine == 'auto':
- engine = get_option('io.parquet.engine')
- if engine == 'auto':
- # try engines in this order
- try:
- return PyArrowImpl()
- except ImportError:
- pass
- try:
- return FastParquetImpl()
- except ImportError:
- pass
- raise ImportError("Unable to find a usable engine; "
- "tried using: 'pyarrow', 'fastparquet'.\n"
- "pyarrow or fastparquet is required for parquet "
- "support")
- if engine not in ['pyarrow', 'fastparquet']:
- raise ValueError("engine must be one of 'pyarrow', 'fastparquet'")
- if engine == 'pyarrow':
- return PyArrowImpl()
- elif engine == 'fastparquet':
- return FastParquetImpl()
- class BaseImpl(object):
- api = None # module
- @staticmethod
- def validate_dataframe(df):
- if not isinstance(df, DataFrame):
- raise ValueError("to_parquet only supports IO with DataFrames")
- # must have value column names (strings only)
- if df.columns.inferred_type not in {'string', 'unicode'}:
- raise ValueError("parquet must have string column names")
- # index level names must be strings
- valid_names = all(
- isinstance(name, string_types)
- for name in df.index.names
- if name is not None
- )
- if not valid_names:
- raise ValueError("Index level names must be strings")
- def write(self, df, path, compression, **kwargs):
- raise AbstractMethodError(self)
- def read(self, path, columns=None, **kwargs):
- raise AbstractMethodError(self)
- class PyArrowImpl(BaseImpl):
- def __init__(self):
- # since pandas is a dependency of pyarrow
- # we need to import on first use
- try:
- import pyarrow
- import pyarrow.parquet
- except ImportError:
- raise ImportError(
- "pyarrow is required for parquet support\n\n"
- "you can install via conda\n"
- "conda install pyarrow -c conda-forge\n"
- "\nor via pip\n"
- "pip install -U pyarrow\n"
- )
- if LooseVersion(pyarrow.__version__) < '0.9.0':
- raise ImportError(
- "pyarrow >= 0.9.0 is required for parquet support\n\n"
- "you can install via conda\n"
- "conda install pyarrow -c conda-forge\n"
- "\nor via pip\n"
- "pip install -U pyarrow\n"
- )
- self.api = pyarrow
- def write(self, df, path, compression='snappy',
- coerce_timestamps='ms', index=None, partition_cols=None,
- **kwargs):
- self.validate_dataframe(df)
- path, _, _, _ = get_filepath_or_buffer(path, mode='wb')
- if index is None:
- from_pandas_kwargs = {}
- else:
- from_pandas_kwargs = {'preserve_index': index}
- table = self.api.Table.from_pandas(df, **from_pandas_kwargs)
- if partition_cols is not None:
- self.api.parquet.write_to_dataset(
- table, path, compression=compression,
- coerce_timestamps=coerce_timestamps,
- partition_cols=partition_cols, **kwargs)
- else:
- self.api.parquet.write_table(
- table, path, compression=compression,
- coerce_timestamps=coerce_timestamps, **kwargs)
- def read(self, path, columns=None, **kwargs):
- path, _, _, should_close = get_filepath_or_buffer(path)
- kwargs['use_pandas_metadata'] = True
- result = self.api.parquet.read_table(path, columns=columns,
- **kwargs).to_pandas()
- if should_close:
- try:
- path.close()
- except: # noqa: flake8
- pass
- return result
- class FastParquetImpl(BaseImpl):
- def __init__(self):
- # since pandas is a dependency of fastparquet
- # we need to import on first use
- try:
- import fastparquet
- except ImportError:
- raise ImportError(
- "fastparquet is required for parquet support\n\n"
- "you can install via conda\n"
- "conda install fastparquet -c conda-forge\n"
- "\nor via pip\n"
- "pip install -U fastparquet"
- )
- if LooseVersion(fastparquet.__version__) < '0.2.1':
- raise ImportError(
- "fastparquet >= 0.2.1 is required for parquet "
- "support\n\n"
- "you can install via conda\n"
- "conda install fastparquet -c conda-forge\n"
- "\nor via pip\n"
- "pip install -U fastparquet"
- )
- self.api = fastparquet
- def write(self, df, path, compression='snappy', index=None,
- partition_cols=None, **kwargs):
- self.validate_dataframe(df)
- # thriftpy/protocol/compact.py:339:
- # DeprecationWarning: tostring() is deprecated.
- # Use tobytes() instead.
- if 'partition_on' in kwargs and partition_cols is not None:
- raise ValueError("Cannot use both partition_on and "
- "partition_cols. Use partition_cols for "
- "partitioning data")
- elif 'partition_on' in kwargs:
- partition_cols = kwargs.pop('partition_on')
- if partition_cols is not None:
- kwargs['file_scheme'] = 'hive'
- if is_s3_url(path):
- # path is s3:// so we need to open the s3file in 'wb' mode.
- # TODO: Support 'ab'
- path, _, _, _ = get_filepath_or_buffer(path, mode='wb')
- # And pass the opened s3file to the fastparquet internal impl.
- kwargs['open_with'] = lambda path, _: path
- else:
- path, _, _, _ = get_filepath_or_buffer(path)
- with catch_warnings(record=True):
- self.api.write(path, df, compression=compression,
- write_index=index, partition_on=partition_cols,
- **kwargs)
- def read(self, path, columns=None, **kwargs):
- if is_s3_url(path):
- # When path is s3:// an S3File is returned.
- # We need to retain the original path(str) while also
- # pass the S3File().open function to fsatparquet impl.
- s3, _, _, should_close = get_filepath_or_buffer(path)
- try:
- parquet_file = self.api.ParquetFile(path, open_with=s3.s3.open)
- finally:
- s3.close()
- else:
- path, _, _, _ = get_filepath_or_buffer(path)
- parquet_file = self.api.ParquetFile(path)
- return parquet_file.to_pandas(columns=columns, **kwargs)
- def to_parquet(df, path, engine='auto', compression='snappy', index=None,
- partition_cols=None, **kwargs):
- """
- Write a DataFrame to the parquet format.
- Parameters
- ----------
- path : str
- File path or Root Directory path. Will be used as Root Directory path
- while writing a partitioned dataset.
- .. versionchanged:: 0.24.0
- engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto'
- Parquet library to use. If 'auto', then the option
- ``io.parquet.engine`` is used. The default ``io.parquet.engine``
- behavior is to try 'pyarrow', falling back to 'fastparquet' if
- 'pyarrow' is unavailable.
- compression : {'snappy', 'gzip', 'brotli', None}, default 'snappy'
- Name of the compression to use. Use ``None`` for no compression.
- index : bool, default None
- If ``True``, include the dataframe's index(es) in the file output. If
- ``False``, they will not be written to the file. If ``None``, the
- engine's default behavior will be used.
- .. versionadded 0.24.0
- partition_cols : list, optional, default None
- Column names by which to partition the dataset
- Columns are partitioned in the order they are given
- .. versionadded:: 0.24.0
- kwargs
- Additional keyword arguments passed to the engine
- """
- impl = get_engine(engine)
- return impl.write(df, path, compression=compression, index=index,
- partition_cols=partition_cols, **kwargs)
- def read_parquet(path, engine='auto', columns=None, **kwargs):
- """
- Load a parquet object from the file path, returning a DataFrame.
- .. versionadded 0.21.0
- Parameters
- ----------
- path : string
- File path
- columns : list, default=None
- If not None, only these columns will be read from the file.
- .. versionadded 0.21.1
- engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto'
- Parquet library to use. If 'auto', then the option
- ``io.parquet.engine`` is used. The default ``io.parquet.engine``
- behavior is to try 'pyarrow', falling back to 'fastparquet' if
- 'pyarrow' is unavailable.
- kwargs are passed to the engine
- Returns
- -------
- DataFrame
- """
- impl = get_engine(engine)
- return impl.read(path, columns=columns, **kwargs)
|