123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518 |
- .. Copyright (C) 2001-2019 NLTK Project
- .. For license information, see LICENSE.TXT
- ================================
- Discourse Representation Theory
- ================================
- >>> from nltk.sem import logic
- >>> from nltk.inference import TableauProver
- Overview
- ========
- A DRS can be created with the ``DRS()`` constructor. This takes two arguments: a list of
- discourse referents and list of conditions. .
- >>> from nltk.sem.drt import *
- >>> dexpr = DrtExpression.fromstring
- >>> man_x = dexpr('man(x)')
- >>> walk_x = dexpr('walk(x)')
- >>> x = dexpr('x')
- >>> print(DRS([x], [man_x, walk_x]))
- ([x],[man(x), walk(x)])
- The ``parse()`` method can also be applied directly to DRS
- expressions, which allows them to be specified more
- easily.
- >>> drs1 = dexpr('([x],[man(x),walk(x)])')
- >>> print(drs1)
- ([x],[man(x), walk(x)])
- DRSs can be *merged* using the ``+`` operator.
- >>> drs2 = dexpr('([y],[woman(y),stop(y)])')
- >>> drs3 = drs1 + drs2
- >>> print(drs3)
- (([x],[man(x), walk(x)]) + ([y],[woman(y), stop(y)]))
- >>> print(drs3.simplify())
- ([x,y],[man(x), walk(x), woman(y), stop(y)])
- We can embed DRSs as components of an ``implies`` condition.
- >>> s = '([], [(%s -> %s)])' % (drs1, drs2)
- >>> print(dexpr(s))
- ([],[(([x],[man(x), walk(x)]) -> ([y],[woman(y), stop(y)]))])
- The ``fol()`` method converts DRSs into FOL formulae.
- >>> print(dexpr(r'([x],[man(x), walks(x)])').fol())
- exists x.(man(x) & walks(x))
- >>> print(dexpr(r'([],[(([x],[man(x)]) -> ([],[walks(x)]))])').fol())
- all x.(man(x) -> walks(x))
- In order to visualize a DRS, the ``pretty_format()`` method can be used.
- >>> print(drs3.pretty_format())
- _________ __________
- | x | | y |
- (|---------| + |----------|)
- | man(x) | | woman(y) |
- | walk(x) | | stop(y) |
- |_________| |__________|
- Parse to semantics
- ------------------
- ..
- >>> logic._counter._value = 0
- DRSs can be used for building compositional semantics in a feature
- based grammar. To specify that we want to use DRSs, the appropriate
- logic parser needs be passed as a parameter to ``load_earley()``
- >>> from nltk.parse import load_parser
- >>> from nltk.sem.drt import DrtParser
- >>> parser = load_parser('grammars/book_grammars/drt.fcfg', trace=0, logic_parser=DrtParser())
- >>> for tree in parser.parse('a dog barks'.split()):
- ... print(tree.label()['SEM'].simplify())
- ...
- ([x],[dog(x), bark(x)])
- Alternatively, a ``FeatStructReader`` can be passed with the ``logic_parser`` set on it
- >>> from nltk.featstruct import FeatStructReader
- >>> from nltk.grammar import FeatStructNonterminal
- >>> parser = load_parser('grammars/book_grammars/drt.fcfg', trace=0, fstruct_reader=FeatStructReader(fdict_class=FeatStructNonterminal, logic_parser=DrtParser()))
- >>> for tree in parser.parse('every girl chases a dog'.split()):
- ... print(tree.label()['SEM'].simplify().normalize())
- ...
- ([],[(([z1],[girl(z1)]) -> ([z2],[dog(z2), chase(z1,z2)]))])
- Unit Tests
- ==========
- Parser
- ------
- >>> print(dexpr(r'([x,y],[sees(x,y)])'))
- ([x,y],[sees(x,y)])
- >>> print(dexpr(r'([x],[man(x), walks(x)])'))
- ([x],[man(x), walks(x)])
- >>> print(dexpr(r'\x.([],[man(x), walks(x)])'))
- \x.([],[man(x), walks(x)])
- >>> print(dexpr(r'\x.\y.([],[sees(x,y)])'))
- \x y.([],[sees(x,y)])
- >>> print(dexpr(r'([x,y],[(x = y)])'))
- ([x,y],[(x = y)])
- >>> print(dexpr(r'([x,y],[(x != y)])'))
- ([x,y],[-(x = y)])
- >>> print(dexpr(r'\x.([],[walks(x)])(john)'))
- (\x.([],[walks(x)]))(john)
- >>> print(dexpr(r'\R.\x.([],[big(x,R)])(\y.([],[mouse(y)]))'))
- (\R x.([],[big(x,R)]))(\y.([],[mouse(y)]))
- >>> print(dexpr(r'(([x],[walks(x)]) + ([y],[runs(y)]))'))
- (([x],[walks(x)]) + ([y],[runs(y)]))
- >>> print(dexpr(r'(([x,y],[walks(x), jumps(y)]) + (([z],[twos(z)]) + ([w],[runs(w)])))'))
- (([x,y],[walks(x), jumps(y)]) + ([z],[twos(z)]) + ([w],[runs(w)]))
- >>> print(dexpr(r'((([],[walks(x)]) + ([],[twos(x)])) + ([],[runs(x)]))'))
- (([],[walks(x)]) + ([],[twos(x)]) + ([],[runs(x)]))
- >>> print(dexpr(r'((([],[walks(x)]) + ([],[runs(x)])) + (([],[threes(x)]) + ([],[fours(x)])))'))
- (([],[walks(x)]) + ([],[runs(x)]) + ([],[threes(x)]) + ([],[fours(x)]))
- >>> print(dexpr(r'(([],[walks(x)]) -> ([],[runs(x)]))'))
- (([],[walks(x)]) -> ([],[runs(x)]))
- >>> print(dexpr(r'([x],[PRO(x), sees(John,x)])'))
- ([x],[PRO(x), sees(John,x)])
- >>> print(dexpr(r'([x],[man(x), -([],[walks(x)])])'))
- ([x],[man(x), -([],[walks(x)])])
- >>> print(dexpr(r'([],[(([x],[man(x)]) -> ([],[walks(x)]))])'))
- ([],[(([x],[man(x)]) -> ([],[walks(x)]))])
- >>> print(dexpr(r'DRS([x],[walk(x)])'))
- ([x],[walk(x)])
- >>> print(dexpr(r'DRS([x][walk(x)])'))
- ([x],[walk(x)])
- >>> print(dexpr(r'([x][walk(x)])'))
- ([x],[walk(x)])
- ``simplify()``
- --------------
- >>> print(dexpr(r'\x.([],[man(x), walks(x)])(john)').simplify())
- ([],[man(john), walks(john)])
- >>> print(dexpr(r'\x.\y.([z],[dog(z),sees(x,y)])(john)(mary)').simplify())
- ([z],[dog(z), sees(john,mary)])
- >>> print(dexpr(r'\R x.([],[big(x,R)])(\y.([],[mouse(y)]))').simplify())
- \x.([],[big(x,\y.([],[mouse(y)]))])
- >>> print(dexpr(r'(([x],[walks(x)]) + ([y],[runs(y)]))').simplify())
- ([x,y],[walks(x), runs(y)])
- >>> print(dexpr(r'(([x,y],[walks(x), jumps(y)]) + (([z],[twos(z)]) + ([w],[runs(w)])))').simplify())
- ([w,x,y,z],[walks(x), jumps(y), twos(z), runs(w)])
- >>> print(dexpr(r'((([],[walks(x)]) + ([],[runs(x)]) + ([],[threes(x)]) + ([],[fours(x)])))').simplify())
- ([],[walks(x), runs(x), threes(x), fours(x)])
- >>> dexpr(r'([x],[man(x)])+([x],[walks(x)])').simplify() == \
- ... dexpr(r'([x,z1],[man(x), walks(z1)])')
- True
- >>> dexpr(r'([y],[boy(y), (([x],[dog(x)]) -> ([],[chase(x,y)]))])+([x],[run(x)])').simplify() == \
- ... dexpr(r'([y,z1],[boy(y), (([x],[dog(x)]) -> ([],[chase(x,y)])), run(z1)])')
- True
- >>> dexpr(r'\Q.(([x],[john(x),walks(x)]) + Q)(([x],[PRO(x),leaves(x)]))').simplify() == \
- ... dexpr(r'([x,z1],[john(x), walks(x), PRO(z1), leaves(z1)])')
- True
- >>> logic._counter._value = 0
- >>> print(dexpr('([],[(([x],[dog(x)]) -> ([e,y],[boy(y), chase(e), subj(e,x), obj(e,y)]))])+([e,x],[PRO(x), run(e), subj(e,x)])').simplify().normalize().normalize())
- ([e02,z5],[(([z3],[dog(z3)]) -> ([e01,z4],[boy(z4), chase(e01), subj(e01,z3), obj(e01,z4)])), PRO(z5), run(e02), subj(e02,z5)])
- ``fol()``
- -----------
- >>> print(dexpr(r'([x,y],[sees(x,y)])').fol())
- exists x y.sees(x,y)
- >>> print(dexpr(r'([x],[man(x), walks(x)])').fol())
- exists x.(man(x) & walks(x))
- >>> print(dexpr(r'\x.([],[man(x), walks(x)])').fol())
- \x.(man(x) & walks(x))
- >>> print(dexpr(r'\x y.([],[sees(x,y)])').fol())
- \x y.sees(x,y)
- >>> print(dexpr(r'\x.([],[walks(x)])(john)').fol())
- \x.walks(x)(john)
- >>> print(dexpr(r'\R x.([],[big(x,R)])(\y.([],[mouse(y)]))').fol())
- (\R x.big(x,R))(\y.mouse(y))
- >>> print(dexpr(r'(([x],[walks(x)]) + ([y],[runs(y)]))').fol())
- (exists x.walks(x) & exists y.runs(y))
- >>> print(dexpr(r'(([],[walks(x)]) -> ([],[runs(x)]))').fol())
- (walks(x) -> runs(x))
- >>> print(dexpr(r'([x],[PRO(x), sees(John,x)])').fol())
- exists x.(PRO(x) & sees(John,x))
- >>> print(dexpr(r'([x],[man(x), -([],[walks(x)])])').fol())
- exists x.(man(x) & -walks(x))
- >>> print(dexpr(r'([],[(([x],[man(x)]) -> ([],[walks(x)]))])').fol())
- all x.(man(x) -> walks(x))
- >>> print(dexpr(r'([x],[man(x) | walks(x)])').fol())
- exists x.(man(x) | walks(x))
- >>> print(dexpr(r'P(x) + ([x],[walks(x)])').fol())
- (P(x) & exists x.walks(x))
- ``resolve_anaphora()``
- ----------------------
- >>> from nltk.sem.drt import AnaphoraResolutionException
- >>> print(resolve_anaphora(dexpr(r'([x,y,z],[dog(x), cat(y), walks(z), PRO(z)])')))
- ([x,y,z],[dog(x), cat(y), walks(z), (z = [x,y])])
- >>> print(resolve_anaphora(dexpr(r'([],[(([x],[dog(x)]) -> ([y],[walks(y), PRO(y)]))])')))
- ([],[(([x],[dog(x)]) -> ([y],[walks(y), (y = x)]))])
- >>> print(resolve_anaphora(dexpr(r'(([x,y],[]) + ([],[PRO(x)]))')).simplify())
- ([x,y],[(x = y)])
- >>> try: print(resolve_anaphora(dexpr(r'([x],[walks(x), PRO(x)])')))
- ... except AnaphoraResolutionException as e: print(e)
- Variable 'x' does not resolve to anything.
- >>> print(resolve_anaphora(dexpr('([e01,z6,z7],[boy(z6), PRO(z7), run(e01), subj(e01,z7)])')))
- ([e01,z6,z7],[boy(z6), (z7 = z6), run(e01), subj(e01,z7)])
- ``equiv()``:
- ----------------
- >>> a = dexpr(r'([x],[man(x), walks(x)])')
- >>> b = dexpr(r'([x],[walks(x), man(x)])')
- >>> print(a.equiv(b, TableauProver()))
- True
- ``replace()``:
- --------------
- >>> a = dexpr(r'a')
- >>> w = dexpr(r'w')
- >>> x = dexpr(r'x')
- >>> y = dexpr(r'y')
- >>> z = dexpr(r'z')
- replace bound
- -------------
- >>> print(dexpr(r'([x],[give(x,y,z)])').replace(x.variable, a, False))
- ([x],[give(x,y,z)])
- >>> print(dexpr(r'([x],[give(x,y,z)])').replace(x.variable, a, True))
- ([a],[give(a,y,z)])
- replace unbound
- ---------------
- >>> print(dexpr(r'([x],[give(x,y,z)])').replace(y.variable, a, False))
- ([x],[give(x,a,z)])
- >>> print(dexpr(r'([x],[give(x,y,z)])').replace(y.variable, a, True))
- ([x],[give(x,a,z)])
- replace unbound with bound
- --------------------------
- >>> dexpr(r'([x],[give(x,y,z)])').replace(y.variable, x, False) == \
- ... dexpr('([z1],[give(z1,x,z)])')
- True
- >>> dexpr(r'([x],[give(x,y,z)])').replace(y.variable, x, True) == \
- ... dexpr('([z1],[give(z1,x,z)])')
- True
- replace unbound with unbound
- ----------------------------
- >>> print(dexpr(r'([x],[give(x,y,z)])').replace(y.variable, z, False))
- ([x],[give(x,z,z)])
- >>> print(dexpr(r'([x],[give(x,y,z)])').replace(y.variable, z, True))
- ([x],[give(x,z,z)])
- replace unbound
- ---------------
- >>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(z.variable, a, False))
- (([x],[P(x,y,a)]) + ([y],[Q(x,y,a)]))
- >>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(z.variable, a, True))
- (([x],[P(x,y,a)]) + ([y],[Q(x,y,a)]))
- replace bound
- -------------
- >>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(x.variable, a, False))
- (([x],[P(x,y,z)]) + ([y],[Q(x,y,z)]))
- >>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(x.variable, a, True))
- (([a],[P(a,y,z)]) + ([y],[Q(a,y,z)]))
- replace unbound with unbound
- ----------------------------
- >>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(z.variable, a, False))
- (([x],[P(x,y,a)]) + ([y],[Q(x,y,a)]))
- >>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(z.variable, a, True))
- (([x],[P(x,y,a)]) + ([y],[Q(x,y,a)]))
- replace unbound with bound on same side
- ---------------------------------------
- >>> dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,w)])').replace(z.variable, x, False) == \
- ... dexpr(r'(([z1],[P(z1,y,x)]) + ([y],[Q(z1,y,w)]))')
- True
- >>> dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,w)])').replace(z.variable, x, True) == \
- ... dexpr(r'(([z1],[P(z1,y,x)]) + ([y],[Q(z1,y,w)]))')
- True
- replace unbound with bound on other side
- ----------------------------------------
- >>> dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,w)])').replace(w.variable, x, False) == \
- ... dexpr(r'(([z1],[P(z1,y,z)]) + ([y],[Q(z1,y,x)]))')
- True
- >>> dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,w)])').replace(w.variable, x, True) == \
- ... dexpr(r'(([z1],[P(z1,y,z)]) + ([y],[Q(z1,y,x)]))')
- True
- replace unbound with double bound
- ---------------------------------
- >>> dexpr(r'([x],[P(x,y,z)])+([x],[Q(x,y,w)])').replace(z.variable, x, False) == \
- ... dexpr(r'(([z1],[P(z1,y,x)]) + ([z1],[Q(z1,y,w)]))')
- True
- >>> dexpr(r'([x],[P(x,y,z)])+([x],[Q(x,y,w)])').replace(z.variable, x, True) == \
- ... dexpr(r'(([z1],[P(z1,y,x)]) + ([z1],[Q(z1,y,w)]))')
- True
- regression tests
- ----------------
- >>> d = dexpr('([x],[A(c), ([y],[B(x,y,z,a)])->([z],[C(x,y,z,a)])])')
- >>> print(d)
- ([x],[A(c), (([y],[B(x,y,z,a)]) -> ([z],[C(x,y,z,a)]))])
- >>> print(d.pretty_format())
- ____________________________________
- | x |
- |------------------------------------|
- | A(c) |
- | ____________ ____________ |
- | | y | | z | |
- | (|------------| -> |------------|) |
- | | B(x,y,z,a) | | C(x,y,z,a) | |
- | |____________| |____________| |
- |____________________________________|
- >>> print(str(d))
- ([x],[A(c), (([y],[B(x,y,z,a)]) -> ([z],[C(x,y,z,a)]))])
- >>> print(d.fol())
- exists x.(A(c) & all y.(B(x,y,z,a) -> exists z.C(x,y,z,a)))
- >>> print(d.replace(Variable('a'), DrtVariableExpression(Variable('r'))))
- ([x],[A(c), (([y],[B(x,y,z,r)]) -> ([z],[C(x,y,z,r)]))])
- >>> print(d.replace(Variable('x'), DrtVariableExpression(Variable('r'))))
- ([x],[A(c), (([y],[B(x,y,z,a)]) -> ([z],[C(x,y,z,a)]))])
- >>> print(d.replace(Variable('y'), DrtVariableExpression(Variable('r'))))
- ([x],[A(c), (([y],[B(x,y,z,a)]) -> ([z],[C(x,y,z,a)]))])
- >>> print(d.replace(Variable('z'), DrtVariableExpression(Variable('r'))))
- ([x],[A(c), (([y],[B(x,y,r,a)]) -> ([z],[C(x,y,z,a)]))])
- >>> print(d.replace(Variable('x'), DrtVariableExpression(Variable('r')), True))
- ([r],[A(c), (([y],[B(r,y,z,a)]) -> ([z],[C(r,y,z,a)]))])
- >>> print(d.replace(Variable('y'), DrtVariableExpression(Variable('r')), True))
- ([x],[A(c), (([r],[B(x,r,z,a)]) -> ([z],[C(x,r,z,a)]))])
- >>> print(d.replace(Variable('z'), DrtVariableExpression(Variable('r')), True))
- ([x],[A(c), (([y],[B(x,y,r,a)]) -> ([r],[C(x,y,r,a)]))])
- >>> print(d == dexpr('([l],[A(c), ([m],[B(l,m,z,a)])->([n],[C(l,m,n,a)])])'))
- True
- >>> d = dexpr('([],[([x,y],[B(x,y,h), ([a,b],[dee(x,a,g)])])->([z,w],[cee(x,y,f), ([c,d],[E(x,c,d,e)])])])')
- >>> sorted(d.free())
- [Variable('B'), Variable('E'), Variable('e'), Variable('f'), Variable('g'), Variable('h')]
- >>> sorted(d.variables())
- [Variable('B'), Variable('E'), Variable('e'), Variable('f'), Variable('g'), Variable('h')]
- >>> sorted(d.get_refs(True))
- [Variable('a'), Variable('b'), Variable('c'), Variable('d'), Variable('w'), Variable('x'), Variable('y'), Variable('z')]
- >>> sorted(d.conds[0].get_refs(False))
- [Variable('x'), Variable('y')]
- >>> print(dexpr('([x,y],[A(x,y), (x=y), ([],[B(x,y)])->([],[C(x,y)]), ([x,y],[D(x,y)])->([],[E(x,y)]), ([],[F(x,y)])->([x,y],[G(x,y)])])').eliminate_equality())
- ([x],[A(x,x), (([],[B(x,x)]) -> ([],[C(x,x)])), (([x,y],[D(x,y)]) -> ([],[E(x,y)])), (([],[F(x,x)]) -> ([x,y],[G(x,y)]))])
- >>> print(dexpr('([x,y],[A(x,y), (x=y)]) -> ([],[B(x,y)])').eliminate_equality())
- (([x],[A(x,x)]) -> ([],[B(x,x)]))
- >>> print(dexpr('([x,y],[A(x,y)]) -> ([],[B(x,y), (x=y)])').eliminate_equality())
- (([x,y],[A(x,y)]) -> ([],[B(x,x)]))
- >>> print(dexpr('([x,y],[A(x,y), (x=y), ([],[B(x,y)])])').eliminate_equality())
- ([x],[A(x,x), ([],[B(x,x)])])
- >>> print(dexpr('([x,y],[A(x,y), ([],[B(x,y), (x=y)])])').eliminate_equality())
- ([x,y],[A(x,y), ([],[B(x,x)])])
- >>> print(dexpr('([z8 z9 z10],[A(z8), z8=z10, z9=z10, B(z9), C(z10), D(z10)])').eliminate_equality())
- ([z9],[A(z9), B(z9), C(z9), D(z9)])
- >>> print(dexpr('([x,y],[A(x,y), (x=y), ([],[B(x,y)]), ([x,y],[C(x,y)])])').eliminate_equality())
- ([x],[A(x,x), ([],[B(x,x)]), ([x,y],[C(x,y)])])
- >>> print(dexpr('([x,y],[A(x,y)]) + ([],[B(x,y), (x=y)]) + ([],[C(x,y)])').eliminate_equality())
- ([x],[A(x,x), B(x,x), C(x,x)])
- >>> print(dexpr('([x,y],[B(x,y)])+([x,y],[C(x,y)])').replace(Variable('y'), DrtVariableExpression(Variable('x'))))
- (([x,y],[B(x,y)]) + ([x,y],[C(x,y)]))
- >>> print(dexpr('(([x,y],[B(x,y)])+([],[C(x,y)]))+([],[D(x,y)])').replace(Variable('y'), DrtVariableExpression(Variable('x'))))
- (([x,y],[B(x,y)]) + ([],[C(x,y)]) + ([],[D(x,y)]))
- >>> print(dexpr('(([],[B(x,y)])+([],[C(x,y)]))+([],[D(x,y)])').replace(Variable('y'), DrtVariableExpression(Variable('x'))))
- (([],[B(x,x)]) + ([],[C(x,x)]) + ([],[D(x,x)]))
- >>> print(dexpr('(([],[B(x,y), ([x,y],[A(x,y)])])+([],[C(x,y)]))+([],[D(x,y)])').replace(Variable('y'), DrtVariableExpression(Variable('x'))).normalize())
- (([],[B(z3,z1), ([z2,z3],[A(z3,z2)])]) + ([],[C(z3,z1)]) + ([],[D(z3,z1)]))
- Parse errors
- ============
- >>> def parse_error(drtstring):
- ... try: dexpr(drtstring)
- ... except logic.LogicalExpressionException as e: print(e)
- >>> parse_error(r'')
- End of input found. Expression expected.
- <BLANKLINE>
- ^
- >>> parse_error(r'(')
- End of input found. Expression expected.
- (
- ^
- >>> parse_error(r'()')
- Unexpected token: ')'. Expression expected.
- ()
- ^
- >>> parse_error(r'([')
- End of input found. Expected token ']'.
- ([
- ^
- >>> parse_error(r'([,')
- ',' is an illegal variable name. Constants may not be quantified.
- ([,
- ^
- >>> parse_error(r'([x,')
- End of input found. Variable expected.
- ([x,
- ^
- >>> parse_error(r'([]')
- End of input found. Expected token '['.
- ([]
- ^
- >>> parse_error(r'([][')
- End of input found. Expected token ']'.
- ([][
- ^
- >>> parse_error(r'([][,')
- Unexpected token: ','. Expression expected.
- ([][,
- ^
- >>> parse_error(r'([][]')
- End of input found. Expected token ')'.
- ([][]
- ^
- >>> parse_error(r'([x][man(x)]) |')
- End of input found. Expression expected.
- ([x][man(x)]) |
- ^
- Pretty Printing
- ===============
- >>> dexpr(r"([],[])").pretty_print()
- __
- | |
- |--|
- |__|
- >>> dexpr(r"([],[([x],[big(x), dog(x)]) -> ([],[bark(x)]) -([x],[walk(x)])])").pretty_print()
- _____________________________
- | |
- |-----------------------------|
- | ________ _________ |
- | | x | | | |
- | (|--------| -> |---------|) |
- | | big(x) | | bark(x) | |
- | | dog(x) | |_________| |
- | |________| |
- | _________ |
- | | x | |
- | __ |---------| |
- | | | walk(x) | |
- | |_________| |
- |_____________________________|
- >>> dexpr(r"([x,y],[x=y]) + ([z],[dog(z), walk(z)])").pretty_print()
- _________ _________
- | x y | | z |
- (|---------| + |---------|)
- | (x = y) | | dog(z) |
- |_________| | walk(z) |
- |_________|
- >>> dexpr(r"([],[([x],[]) | ([y],[]) | ([z],[dog(z), walk(z)])])").pretty_print()
- _______________________________
- | |
- |-------------------------------|
- | ___ ___ _________ |
- | | x | | y | | z | |
- | (|---| | |---| | |---------|) |
- | |___| |___| | dog(z) | |
- | | walk(z) | |
- | |_________| |
- |_______________________________|
- >>> dexpr(r"\P.\Q.(([x],[]) + P(x) + Q(x))(\x.([],[dog(x)]))").pretty_print()
- ___ ________
- \ | x | \ | |
- /\ P Q.(|---| + P(x) + Q(x))( /\ x.|--------|)
- |___| | dog(x) |
- |________|
|