123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287 |
- .. Copyright (C) 2001-2019 NLTK Project
- .. For license information, see LICENSE.TXT
- ======================
- Nonmonotonic Reasoning
- ======================
- >>> from nltk import *
- >>> from nltk.inference.nonmonotonic import *
- >>> from nltk.sem import logic
- >>> logic._counter._value = 0
- >>> read_expr = logic.Expression.fromstring
- ------------------------
- Closed Domain Assumption
- ------------------------
- The only entities in the domain are those found in the assumptions or goal.
- If the domain only contains "A" and "B", then the expression "exists x.P(x)" can
- be replaced with "P(A) | P(B)" and an expression "all x.P(x)" can be replaced
- with "P(A) & P(B)".
- >>> p1 = read_expr(r'all x.(man(x) -> mortal(x))')
- >>> p2 = read_expr(r'man(Socrates)')
- >>> c = read_expr(r'mortal(Socrates)')
- >>> prover = Prover9Command(c, [p1,p2])
- >>> prover.prove()
- True
- >>> cdp = ClosedDomainProver(prover)
- >>> for a in cdp.assumptions(): print(a) # doctest: +SKIP
- (man(Socrates) -> mortal(Socrates))
- man(Socrates)
- >>> cdp.prove()
- True
- >>> p1 = read_expr(r'exists x.walk(x)')
- >>> p2 = read_expr(r'man(Socrates)')
- >>> c = read_expr(r'walk(Socrates)')
- >>> prover = Prover9Command(c, [p1,p2])
- >>> prover.prove()
- False
- >>> cdp = ClosedDomainProver(prover)
- >>> for a in cdp.assumptions(): print(a) # doctest: +SKIP
- walk(Socrates)
- man(Socrates)
- >>> cdp.prove()
- True
- >>> p1 = read_expr(r'exists x.walk(x)')
- >>> p2 = read_expr(r'man(Socrates)')
- >>> p3 = read_expr(r'-walk(Bill)')
- >>> c = read_expr(r'walk(Socrates)')
- >>> prover = Prover9Command(c, [p1,p2,p3])
- >>> prover.prove()
- False
- >>> cdp = ClosedDomainProver(prover)
- >>> for a in cdp.assumptions(): print(a) # doctest: +SKIP
- (walk(Socrates) | walk(Bill))
- man(Socrates)
- -walk(Bill)
- >>> cdp.prove()
- True
- >>> p1 = read_expr(r'walk(Socrates)')
- >>> p2 = read_expr(r'walk(Bill)')
- >>> c = read_expr(r'all x.walk(x)')
- >>> prover = Prover9Command(c, [p1,p2])
- >>> prover.prove()
- False
- >>> cdp = ClosedDomainProver(prover)
- >>> for a in cdp.assumptions(): print(a) # doctest: +SKIP
- walk(Socrates)
- walk(Bill)
- >>> print(cdp.goal()) # doctest: +SKIP
- (walk(Socrates) & walk(Bill))
- >>> cdp.prove()
- True
- >>> p1 = read_expr(r'girl(mary)')
- >>> p2 = read_expr(r'dog(rover)')
- >>> p3 = read_expr(r'all x.(girl(x) -> -dog(x))')
- >>> p4 = read_expr(r'all x.(dog(x) -> -girl(x))')
- >>> p5 = read_expr(r'chase(mary, rover)')
- >>> c = read_expr(r'exists y.(dog(y) & all x.(girl(x) -> chase(x,y)))')
- >>> prover = Prover9Command(c, [p1,p2,p3,p4,p5])
- >>> print(prover.prove())
- False
- >>> cdp = ClosedDomainProver(prover)
- >>> for a in cdp.assumptions(): print(a) # doctest: +SKIP
- girl(mary)
- dog(rover)
- ((girl(rover) -> -dog(rover)) & (girl(mary) -> -dog(mary)))
- ((dog(rover) -> -girl(rover)) & (dog(mary) -> -girl(mary)))
- chase(mary,rover)
- >>> print(cdp.goal()) # doctest: +SKIP
- ((dog(rover) & (girl(rover) -> chase(rover,rover)) & (girl(mary) -> chase(mary,rover))) | (dog(mary) & (girl(rover) -> chase(rover,mary)) & (girl(mary) -> chase(mary,mary))))
- >>> print(cdp.prove())
- True
- -----------------------
- Unique Names Assumption
- -----------------------
- No two entities in the domain represent the same entity unless it can be
- explicitly proven that they do. Therefore, if the domain contains "A" and "B",
- then add the assumption "-(A = B)" if it is not the case that
- "<assumptions> \|- (A = B)".
- >>> p1 = read_expr(r'man(Socrates)')
- >>> p2 = read_expr(r'man(Bill)')
- >>> c = read_expr(r'exists x.exists y.-(x = y)')
- >>> prover = Prover9Command(c, [p1,p2])
- >>> prover.prove()
- False
- >>> unp = UniqueNamesProver(prover)
- >>> for a in unp.assumptions(): print(a) # doctest: +SKIP
- man(Socrates)
- man(Bill)
- -(Socrates = Bill)
- >>> unp.prove()
- True
- >>> p1 = read_expr(r'all x.(walk(x) -> (x = Socrates))')
- >>> p2 = read_expr(r'Bill = William')
- >>> p3 = read_expr(r'Bill = Billy')
- >>> c = read_expr(r'-walk(William)')
- >>> prover = Prover9Command(c, [p1,p2,p3])
- >>> prover.prove()
- False
- >>> unp = UniqueNamesProver(prover)
- >>> for a in unp.assumptions(): print(a) # doctest: +SKIP
- all x.(walk(x) -> (x = Socrates))
- (Bill = William)
- (Bill = Billy)
- -(William = Socrates)
- -(Billy = Socrates)
- -(Socrates = Bill)
- >>> unp.prove()
- True
- -----------------------
- Closed World Assumption
- -----------------------
- The only entities that have certain properties are those that is it stated
- have the properties. We accomplish this assumption by "completing" predicates.
- If the assumptions contain "P(A)", then "all x.(P(x) -> (x=A))" is the completion
- of "P". If the assumptions contain "all x.(ostrich(x) -> bird(x))", then
- "all x.(bird(x) -> ostrich(x))" is the completion of "bird". If the
- assumptions don't contain anything that are "P", then "all x.-P(x)" is the
- completion of "P".
- >>> p1 = read_expr(r'walk(Socrates)')
- >>> p2 = read_expr(r'-(Socrates = Bill)')
- >>> c = read_expr(r'-walk(Bill)')
- >>> prover = Prover9Command(c, [p1,p2])
- >>> prover.prove()
- False
- >>> cwp = ClosedWorldProver(prover)
- >>> for a in cwp.assumptions(): print(a) # doctest: +SKIP
- walk(Socrates)
- -(Socrates = Bill)
- all z1.(walk(z1) -> (z1 = Socrates))
- >>> cwp.prove()
- True
- >>> p1 = read_expr(r'see(Socrates, John)')
- >>> p2 = read_expr(r'see(John, Mary)')
- >>> p3 = read_expr(r'-(Socrates = John)')
- >>> p4 = read_expr(r'-(John = Mary)')
- >>> c = read_expr(r'-see(Socrates, Mary)')
- >>> prover = Prover9Command(c, [p1,p2,p3,p4])
- >>> prover.prove()
- False
- >>> cwp = ClosedWorldProver(prover)
- >>> for a in cwp.assumptions(): print(a) # doctest: +SKIP
- see(Socrates,John)
- see(John,Mary)
- -(Socrates = John)
- -(John = Mary)
- all z3 z4.(see(z3,z4) -> (((z3 = Socrates) & (z4 = John)) | ((z3 = John) & (z4 = Mary))))
- >>> cwp.prove()
- True
- >>> p1 = read_expr(r'all x.(ostrich(x) -> bird(x))')
- >>> p2 = read_expr(r'bird(Tweety)')
- >>> p3 = read_expr(r'-ostrich(Sam)')
- >>> p4 = read_expr(r'Sam != Tweety')
- >>> c = read_expr(r'-bird(Sam)')
- >>> prover = Prover9Command(c, [p1,p2,p3,p4])
- >>> prover.prove()
- False
- >>> cwp = ClosedWorldProver(prover)
- >>> for a in cwp.assumptions(): print(a) # doctest: +SKIP
- all x.(ostrich(x) -> bird(x))
- bird(Tweety)
- -ostrich(Sam)
- -(Sam = Tweety)
- all z7.-ostrich(z7)
- all z8.(bird(z8) -> ((z8 = Tweety) | ostrich(z8)))
- >>> print(cwp.prove())
- True
- -----------------------
- Multi-Decorator Example
- -----------------------
- Decorators can be nested to utilize multiple assumptions.
- >>> p1 = read_expr(r'see(Socrates, John)')
- >>> p2 = read_expr(r'see(John, Mary)')
- >>> c = read_expr(r'-see(Socrates, Mary)')
- >>> prover = Prover9Command(c, [p1,p2])
- >>> print(prover.prove())
- False
- >>> cmd = ClosedDomainProver(UniqueNamesProver(ClosedWorldProver(prover)))
- >>> print(cmd.prove())
- True
- -----------------
- Default Reasoning
- -----------------
- >>> logic._counter._value = 0
- >>> premises = []
- define the taxonomy
- >>> premises.append(read_expr(r'all x.(elephant(x) -> animal(x))'))
- >>> premises.append(read_expr(r'all x.(bird(x) -> animal(x))'))
- >>> premises.append(read_expr(r'all x.(dove(x) -> bird(x))'))
- >>> premises.append(read_expr(r'all x.(ostrich(x) -> bird(x))'))
- >>> premises.append(read_expr(r'all x.(flying_ostrich(x) -> ostrich(x))'))
- default the properties using abnormalities
- >>> premises.append(read_expr(r'all x.((animal(x) & -Ab1(x)) -> -fly(x))')) #normal animals don't fly
- >>> premises.append(read_expr(r'all x.((bird(x) & -Ab2(x)) -> fly(x))')) #normal birds fly
- >>> premises.append(read_expr(r'all x.((ostrich(x) & -Ab3(x)) -> -fly(x))')) #normal ostriches don't fly
- specify abnormal entities
- >>> premises.append(read_expr(r'all x.(bird(x) -> Ab1(x))')) #flight
- >>> premises.append(read_expr(r'all x.(ostrich(x) -> Ab2(x))')) #non-flying bird
- >>> premises.append(read_expr(r'all x.(flying_ostrich(x) -> Ab3(x))')) #flying ostrich
- define entities
- >>> premises.append(read_expr(r'elephant(el)'))
- >>> premises.append(read_expr(r'dove(do)'))
- >>> premises.append(read_expr(r'ostrich(os)'))
- print the augmented assumptions list
- >>> prover = Prover9Command(None, premises)
- >>> command = UniqueNamesProver(ClosedWorldProver(prover))
- >>> for a in command.assumptions(): print(a) # doctest: +SKIP
- all x.(elephant(x) -> animal(x))
- all x.(bird(x) -> animal(x))
- all x.(dove(x) -> bird(x))
- all x.(ostrich(x) -> bird(x))
- all x.(flying_ostrich(x) -> ostrich(x))
- all x.((animal(x) & -Ab1(x)) -> -fly(x))
- all x.((bird(x) & -Ab2(x)) -> fly(x))
- all x.((ostrich(x) & -Ab3(x)) -> -fly(x))
- all x.(bird(x) -> Ab1(x))
- all x.(ostrich(x) -> Ab2(x))
- all x.(flying_ostrich(x) -> Ab3(x))
- elephant(el)
- dove(do)
- ostrich(os)
- all z1.(animal(z1) -> (elephant(z1) | bird(z1)))
- all z2.(Ab1(z2) -> bird(z2))
- all z3.(bird(z3) -> (dove(z3) | ostrich(z3)))
- all z4.(dove(z4) -> (z4 = do))
- all z5.(Ab2(z5) -> ostrich(z5))
- all z6.(Ab3(z6) -> flying_ostrich(z6))
- all z7.(ostrich(z7) -> ((z7 = os) | flying_ostrich(z7)))
- all z8.-flying_ostrich(z8)
- all z9.(elephant(z9) -> (z9 = el))
- -(el = os)
- -(el = do)
- -(os = do)
- >>> UniqueNamesProver(ClosedWorldProver(Prover9Command(read_expr('-fly(el)'), premises))).prove()
- True
- >>> UniqueNamesProver(ClosedWorldProver(Prover9Command(read_expr('fly(do)'), premises))).prove()
- True
- >>> UniqueNamesProver(ClosedWorldProver(Prover9Command(read_expr('-fly(os)'), premises))).prove()
- True
|