123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340 |
- # Natural Language Toolkit: API for alignment and translation objects
- #
- # Copyright (C) 2001-2019 NLTK Project
- # Author: Will Zhang <wilzzha@gmail.com>
- # Guan Gui <ggui@student.unimelb.edu.au>
- # Steven Bird <stevenbird1@gmail.com>
- # Tah Wei Hoon <hoon.tw@gmail.com>
- # URL: <http://nltk.org/>
- # For license information, see LICENSE.TXT
- from __future__ import print_function, unicode_literals
- import subprocess
- from collections import namedtuple
- from nltk.compat import python_2_unicode_compatible
- @python_2_unicode_compatible
- class AlignedSent(object):
- """
- Return an aligned sentence object, which encapsulates two sentences
- along with an ``Alignment`` between them.
- Typically used in machine translation to represent a sentence and
- its translation.
- >>> from nltk.translate import AlignedSent, Alignment
- >>> algnsent = AlignedSent(['klein', 'ist', 'das', 'Haus'],
- ... ['the', 'house', 'is', 'small'], Alignment.fromstring('0-3 1-2 2-0 3-1'))
- >>> algnsent.words
- ['klein', 'ist', 'das', 'Haus']
- >>> algnsent.mots
- ['the', 'house', 'is', 'small']
- >>> algnsent.alignment
- Alignment([(0, 3), (1, 2), (2, 0), (3, 1)])
- >>> from nltk.corpus import comtrans
- >>> print(comtrans.aligned_sents()[54])
- <AlignedSent: 'Weshalb also sollten...' -> 'So why should EU arm...'>
- >>> print(comtrans.aligned_sents()[54].alignment)
- 0-0 0-1 1-0 2-2 3-4 3-5 4-7 5-8 6-3 7-9 8-9 9-10 9-11 10-12 11-6 12-6 13-13
- :param words: Words in the target language sentence
- :type words: list(str)
- :param mots: Words in the source language sentence
- :type mots: list(str)
- :param alignment: Word-level alignments between ``words`` and ``mots``.
- Each alignment is represented as a 2-tuple (words_index, mots_index).
- :type alignment: Alignment
- """
- def __init__(self, words, mots, alignment=None):
- self._words = words
- self._mots = mots
- if alignment is None:
- self.alignment = Alignment([])
- else:
- assert type(alignment) is Alignment
- self.alignment = alignment
- @property
- def words(self):
- return self._words
- @property
- def mots(self):
- return self._mots
- def _get_alignment(self):
- return self._alignment
- def _set_alignment(self, alignment):
- _check_alignment(len(self.words), len(self.mots), alignment)
- self._alignment = alignment
- alignment = property(_get_alignment, _set_alignment)
- def __repr__(self):
- """
- Return a string representation for this ``AlignedSent``.
- :rtype: str
- """
- words = "[%s]" % (", ".join("'%s'" % w for w in self._words))
- mots = "[%s]" % (", ".join("'%s'" % w for w in self._mots))
- return "AlignedSent(%s, %s, %r)" % (words, mots, self._alignment)
- def _to_dot(self):
- """
- Dot representation of the aligned sentence
- """
- s = 'graph align {\n'
- s += 'node[shape=plaintext]\n'
- # Declare node
- for w in self._words:
- s += '"%s_source" [label="%s"] \n' % (w, w)
- for w in self._mots:
- s += '"%s_target" [label="%s"] \n' % (w, w)
- # Alignment
- for u, v in self._alignment:
- s += '"%s_source" -- "%s_target" \n' % (self._words[u], self._mots[v])
- # Connect the source words
- for i in range(len(self._words) - 1):
- s += '"%s_source" -- "%s_source" [style=invis]\n' % (
- self._words[i],
- self._words[i + 1],
- )
- # Connect the target words
- for i in range(len(self._mots) - 1):
- s += '"%s_target" -- "%s_target" [style=invis]\n' % (
- self._mots[i],
- self._mots[i + 1],
- )
- # Put it in the same rank
- s += '{rank = same; %s}\n' % (' '.join('"%s_source"' % w for w in self._words))
- s += '{rank = same; %s}\n' % (' '.join('"%s_target"' % w for w in self._mots))
- s += '}'
- return s
- def _repr_svg_(self):
- """
- Ipython magic : show SVG representation of this ``AlignedSent``.
- """
- dot_string = self._to_dot().encode('utf8')
- output_format = 'svg'
- try:
- process = subprocess.Popen(
- ['dot', '-T%s' % output_format],
- stdin=subprocess.PIPE,
- stdout=subprocess.PIPE,
- stderr=subprocess.PIPE,
- )
- except OSError:
- raise Exception('Cannot find the dot binary from Graphviz package')
- out, err = process.communicate(dot_string)
- return out.decode('utf8')
- def __str__(self):
- """
- Return a human-readable string representation for this ``AlignedSent``.
- :rtype: str
- """
- source = " ".join(self._words)[:20] + "..."
- target = " ".join(self._mots)[:20] + "..."
- return "<AlignedSent: '%s' -> '%s'>" % (source, target)
- def invert(self):
- """
- Return the aligned sentence pair, reversing the directionality
- :rtype: AlignedSent
- """
- return AlignedSent(self._mots, self._words, self._alignment.invert())
- @python_2_unicode_compatible
- class Alignment(frozenset):
- """
- A storage class for representing alignment between two sequences, s1, s2.
- In general, an alignment is a set of tuples of the form (i, j, ...)
- representing an alignment between the i-th element of s1 and the
- j-th element of s2. Tuples are extensible (they might contain
- additional data, such as a boolean to indicate sure vs possible alignments).
- >>> from nltk.translate import Alignment
- >>> a = Alignment([(0, 0), (0, 1), (1, 2), (2, 2)])
- >>> a.invert()
- Alignment([(0, 0), (1, 0), (2, 1), (2, 2)])
- >>> print(a.invert())
- 0-0 1-0 2-1 2-2
- >>> a[0]
- [(0, 1), (0, 0)]
- >>> a.invert()[2]
- [(2, 1), (2, 2)]
- >>> b = Alignment([(0, 0), (0, 1)])
- >>> b.issubset(a)
- True
- >>> c = Alignment.fromstring('0-0 0-1')
- >>> b == c
- True
- """
- def __new__(cls, pairs):
- self = frozenset.__new__(cls, pairs)
- self._len = max(p[0] for p in self) if self != frozenset([]) else 0
- self._index = None
- return self
- @classmethod
- def fromstring(cls, s):
- """
- Read a giza-formatted string and return an Alignment object.
- >>> Alignment.fromstring('0-0 2-1 9-2 21-3 10-4 7-5')
- Alignment([(0, 0), (2, 1), (7, 5), (9, 2), (10, 4), (21, 3)])
- :type s: str
- :param s: the positional alignments in giza format
- :rtype: Alignment
- :return: An Alignment object corresponding to the string representation ``s``.
- """
- return Alignment([_giza2pair(a) for a in s.split()])
- def __getitem__(self, key):
- """
- Look up the alignments that map from a given index or slice.
- """
- if not self._index:
- self._build_index()
- return self._index.__getitem__(key)
- def invert(self):
- """
- Return an Alignment object, being the inverted mapping.
- """
- return Alignment(((p[1], p[0]) + p[2:]) for p in self)
- def range(self, positions=None):
- """
- Work out the range of the mapping from the given positions.
- If no positions are specified, compute the range of the entire mapping.
- """
- image = set()
- if not self._index:
- self._build_index()
- if not positions:
- positions = list(range(len(self._index)))
- for p in positions:
- image.update(f for _, f in self._index[p])
- return sorted(image)
- def __repr__(self):
- """
- Produce a Giza-formatted string representing the alignment.
- """
- return "Alignment(%r)" % sorted(self)
- def __str__(self):
- """
- Produce a Giza-formatted string representing the alignment.
- """
- return " ".join("%d-%d" % p[:2] for p in sorted(self))
- def _build_index(self):
- """
- Build a list self._index such that self._index[i] is a list
- of the alignments originating from word i.
- """
- self._index = [[] for _ in range(self._len + 1)]
- for p in self:
- self._index[p[0]].append(p)
- def _giza2pair(pair_string):
- i, j = pair_string.split("-")
- return int(i), int(j)
- def _naacl2pair(pair_string):
- i, j, p = pair_string.split("-")
- return int(i), int(j)
- def _check_alignment(num_words, num_mots, alignment):
- """
- Check whether the alignments are legal.
- :param num_words: the number of source language words
- :type num_words: int
- :param num_mots: the number of target language words
- :type num_mots: int
- :param alignment: alignment to be checked
- :type alignment: Alignment
- :raise IndexError: if alignment falls outside the sentence
- """
- assert type(alignment) is Alignment
- if not all(0 <= pair[0] < num_words for pair in alignment):
- raise IndexError("Alignment is outside boundary of words")
- if not all(pair[1] is None or 0 <= pair[1] < num_mots for pair in alignment):
- raise IndexError("Alignment is outside boundary of mots")
- PhraseTableEntry = namedtuple('PhraseTableEntry', ['trg_phrase', 'log_prob'])
- class PhraseTable(object):
- """
- In-memory store of translations for a given phrase, and the log
- probability of the those translations
- """
- def __init__(self):
- self.src_phrases = dict()
- def translations_for(self, src_phrase):
- """
- Get the translations for a source language phrase
- :param src_phrase: Source language phrase of interest
- :type src_phrase: tuple(str)
- :return: A list of target language phrases that are translations
- of ``src_phrase``, ordered in decreasing order of
- likelihood. Each list element is a tuple of the target
- phrase and its log probability.
- :rtype: list(PhraseTableEntry)
- """
- return self.src_phrases[src_phrase]
- def add(self, src_phrase, trg_phrase, log_prob):
- """
- :type src_phrase: tuple(str)
- :type trg_phrase: tuple(str)
- :param log_prob: Log probability that given ``src_phrase``,
- ``trg_phrase`` is its translation
- :type log_prob: float
- """
- entry = PhraseTableEntry(trg_phrase=trg_phrase, log_prob=log_prob)
- if src_phrase not in self.src_phrases:
- self.src_phrases[src_phrase] = []
- self.src_phrases[src_phrase].append(entry)
- self.src_phrases[src_phrase].sort(key=lambda e: e.log_prob, reverse=True)
- def __contains__(self, src_phrase):
- return src_phrase in self.src_phrases
|