123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- # -*- coding: utf-8 -*-
- # Natural Language Toolkit: GDFA word alignment symmetrization
- #
- # Copyright (C) 2001-2019 NLTK Project
- # Authors: Liling Tan
- # URL: <http://nltk.org/>
- # For license information, see LICENSE.TXT
- from collections import defaultdict
- def grow_diag_final_and(srclen, trglen, e2f, f2e):
- """
- This module symmetrisatizes the source-to-target and target-to-source
- word alignment output and produces, aka. GDFA algorithm (Koehn, 2005).
- Step 1: Find the intersection of the bidirectional alignment.
- Step 2: Search for additional neighbor alignment points to be added, given
- these criteria: (i) neighbor alignments points are not in the
- intersection and (ii) neighbor alignments are in the union.
- Step 3: Add all other alignment points thats not in the intersection, not in
- the neighboring alignments that met the criteria but in the original
- foward/backward alignment outputs.
- >>> forw = ('0-0 2-1 9-2 21-3 10-4 7-5 11-6 9-7 12-8 1-9 3-10 '
- ... '4-11 17-12 17-13 25-14 13-15 24-16 11-17 28-18')
- >>> back = ('0-0 1-9 2-9 3-10 4-11 5-12 6-6 7-5 8-6 9-7 10-4 '
- ... '11-6 12-8 13-12 15-12 17-13 18-13 19-12 20-13 '
- ... '21-3 22-12 23-14 24-17 25-15 26-17 27-18 28-18')
- >>> srctext = ("この よう な ハロー 白色 わい 星 の L 関数 "
- ... "は L と 共 に 不連続 に 増加 する こと が "
- ... "期待 さ れる こと を 示し た 。")
- >>> trgtext = ("Therefore , we expect that the luminosity function "
- ... "of such halo white dwarfs increases discontinuously "
- ... "with the luminosity .")
- >>> srclen = len(srctext.split())
- >>> trglen = len(trgtext.split())
- >>>
- >>> gdfa = grow_diag_final_and(srclen, trglen, forw, back)
- >>> gdfa == sorted(set([(28, 18), (6, 6), (24, 17), (2, 1), (15, 12), (13, 12),
- ... (2, 9), (3, 10), (26, 17), (25, 15), (8, 6), (9, 7), (20,
- ... 13), (18, 13), (0, 0), (10, 4), (13, 15), (23, 14), (7, 5),
- ... (25, 14), (1, 9), (17, 13), (4, 11), (11, 17), (9, 2), (22,
- ... 12), (27, 18), (24, 16), (21, 3), (19, 12), (17, 12), (5,
- ... 12), (11, 6), (12, 8)]))
- True
- References:
- Koehn, P., A. Axelrod, A. Birch, C. Callison, M. Osborne, and D. Talbot.
- 2005. Edinburgh System Description for the 2005 IWSLT Speech
- Translation Evaluation. In MT Eval Workshop.
- :type srclen: int
- :param srclen: the number of tokens in the source language
- :type trglen: int
- :param trglen: the number of tokens in the target language
- :type e2f: str
- :param e2f: the forward word alignment outputs from source-to-target
- language (in pharaoh output format)
- :type f2e: str
- :param f2e: the backward word alignment outputs from target-to-source
- language (in pharaoh output format)
- :rtype: set(tuple(int))
- :return: the symmetrized alignment points from the GDFA algorithm
- """
- # Converts pharaoh text format into list of tuples.
- e2f = [tuple(map(int, a.split('-'))) for a in e2f.split()]
- f2e = [tuple(map(int, a.split('-'))) for a in f2e.split()]
- neighbors = [(-1, 0), (0, -1), (1, 0), (0, 1), (-1, -1), (-1, 1), (1, -1), (1, 1)]
- alignment = set(e2f).intersection(set(f2e)) # Find the intersection.
- union = set(e2f).union(set(f2e))
- # *aligned* is used to check if neighbors are aligned in grow_diag()
- aligned = defaultdict(set)
- for i, j in alignment:
- aligned['e'].add(i)
- aligned['f'].add(j)
- def grow_diag():
- """
- Search for the neighbor points and them to the intersected alignment
- points if criteria are met.
- """
- prev_len = len(alignment) - 1
- # iterate until no new points added
- while prev_len < len(alignment):
- no_new_points = True
- # for english word e = 0 ... en
- for e in range(srclen):
- # for foreign word f = 0 ... fn
- for f in range(trglen):
- # if ( e aligned with f)
- if (e, f) in alignment:
- # for each neighboring point (e-new, f-new)
- for neighbor in neighbors:
- neighbor = tuple(i + j for i, j in zip((e, f), neighbor))
- e_new, f_new = neighbor
- # if ( ( e-new not aligned and f-new not aligned)
- # and (e-new, f-new in union(e2f, f2e) )
- if (
- e_new not in aligned and f_new not in aligned
- ) and neighbor in union:
- alignment.add(neighbor)
- aligned['e'].add(e_new)
- aligned['f'].add(f_new)
- prev_len += 1
- no_new_points = False
- # iterate until no new points added
- if no_new_points:
- break
- def final_and(a):
- """
- Adds remaining points that are not in the intersection, not in the
- neighboring alignments but in the original *e2f* and *f2e* alignments
- """
- # for english word e = 0 ... en
- for e_new in range(srclen):
- # for foreign word f = 0 ... fn
- for f_new in range(trglen):
- # if ( ( e-new not aligned and f-new not aligned)
- # and (e-new, f-new in union(e2f, f2e) )
- if (
- e_new not in aligned
- and f_new not in aligned
- and (e_new, f_new) in union
- ):
- alignment.add((e_new, f_new))
- aligned['e'].add(e_new)
- aligned['f'].add(f_new)
- grow_diag()
- final_and(e2f)
- final_and(f2e)
- return sorted(alignment)
|