123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322 |
- # -*- coding: utf-8 -*-
- # Natural Language Toolkit: IBM Model 2
- #
- # Copyright (C) 2001-2013 NLTK Project
- # Authors: Chin Yee Lee, Hengfeng Li, Ruxin Hou, Calvin Tanujaya Lim
- # URL: <http://nltk.org/>
- # For license information, see LICENSE.TXT
- """
- Lexical translation model that considers word order.
- IBM Model 2 improves on Model 1 by accounting for word order.
- An alignment probability is introduced, a(i | j,l,m), which predicts
- a source word position, given its aligned target word's position.
- The EM algorithm used in Model 2 is:
- E step - In the training data, collect counts, weighted by prior
- probabilities.
- (a) count how many times a source language word is translated
- into a target language word
- (b) count how many times a particular position in the source
- sentence is aligned to a particular position in the target
- sentence
- M step - Estimate new probabilities based on the counts from the E step
- Notations:
- i: Position in the source sentence
- Valid values are 0 (for NULL), 1, 2, ..., length of source sentence
- j: Position in the target sentence
- Valid values are 1, 2, ..., length of target sentence
- l: Number of words in the source sentence, excluding NULL
- m: Number of words in the target sentence
- s: A word in the source language
- t: A word in the target language
- References:
- Philipp Koehn. 2010. Statistical Machine Translation.
- Cambridge University Press, New York.
- Peter E Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and
- Robert L. Mercer. 1993. The Mathematics of Statistical Machine
- Translation: Parameter Estimation. Computational Linguistics, 19 (2),
- 263-311.
- """
- from __future__ import division
- import warnings
- from collections import defaultdict
- from nltk.translate import AlignedSent
- from nltk.translate import Alignment
- from nltk.translate import IBMModel
- from nltk.translate import IBMModel1
- from nltk.translate.ibm_model import Counts
- class IBMModel2(IBMModel):
- """
- Lexical translation model that considers word order
- >>> bitext = []
- >>> bitext.append(AlignedSent(['klein', 'ist', 'das', 'haus'], ['the', 'house', 'is', 'small']))
- >>> bitext.append(AlignedSent(['das', 'haus', 'ist', 'ja', 'groß'], ['the', 'house', 'is', 'big']))
- >>> bitext.append(AlignedSent(['das', 'buch', 'ist', 'ja', 'klein'], ['the', 'book', 'is', 'small']))
- >>> bitext.append(AlignedSent(['das', 'haus'], ['the', 'house']))
- >>> bitext.append(AlignedSent(['das', 'buch'], ['the', 'book']))
- >>> bitext.append(AlignedSent(['ein', 'buch'], ['a', 'book']))
- >>> ibm2 = IBMModel2(bitext, 5)
- >>> print(round(ibm2.translation_table['buch']['book'], 3))
- 1.0
- >>> print(round(ibm2.translation_table['das']['book'], 3))
- 0.0
- >>> print(round(ibm2.translation_table['buch'][None], 3))
- 0.0
- >>> print(round(ibm2.translation_table['ja'][None], 3))
- 0.0
- >>> print(ibm2.alignment_table[1][1][2][2])
- 0.938...
- >>> print(round(ibm2.alignment_table[1][2][2][2], 3))
- 0.0
- >>> print(round(ibm2.alignment_table[2][2][4][5], 3))
- 1.0
- >>> test_sentence = bitext[2]
- >>> test_sentence.words
- ['das', 'buch', 'ist', 'ja', 'klein']
- >>> test_sentence.mots
- ['the', 'book', 'is', 'small']
- >>> test_sentence.alignment
- Alignment([(0, 0), (1, 1), (2, 2), (3, 2), (4, 3)])
- """
- def __init__(self, sentence_aligned_corpus, iterations, probability_tables=None):
- """
- Train on ``sentence_aligned_corpus`` and create a lexical
- translation model and an alignment model.
- Translation direction is from ``AlignedSent.mots`` to
- ``AlignedSent.words``.
- :param sentence_aligned_corpus: Sentence-aligned parallel corpus
- :type sentence_aligned_corpus: list(AlignedSent)
- :param iterations: Number of iterations to run training algorithm
- :type iterations: int
- :param probability_tables: Optional. Use this to pass in custom
- probability values. If not specified, probabilities will be
- set to a uniform distribution, or some other sensible value.
- If specified, all the following entries must be present:
- ``translation_table``, ``alignment_table``.
- See ``IBMModel`` for the type and purpose of these tables.
- :type probability_tables: dict[str]: object
- """
- super(IBMModel2, self).__init__(sentence_aligned_corpus)
- if probability_tables is None:
- # Get translation probabilities from IBM Model 1
- # Run more iterations of training for Model 1, since it is
- # faster than Model 2
- ibm1 = IBMModel1(sentence_aligned_corpus, 2 * iterations)
- self.translation_table = ibm1.translation_table
- self.set_uniform_probabilities(sentence_aligned_corpus)
- else:
- # Set user-defined probabilities
- self.translation_table = probability_tables['translation_table']
- self.alignment_table = probability_tables['alignment_table']
- for n in range(0, iterations):
- self.train(sentence_aligned_corpus)
- self.align_all(sentence_aligned_corpus)
- def set_uniform_probabilities(self, sentence_aligned_corpus):
- # a(i | j,l,m) = 1 / (l+1) for all i, j, l, m
- l_m_combinations = set()
- for aligned_sentence in sentence_aligned_corpus:
- l = len(aligned_sentence.mots)
- m = len(aligned_sentence.words)
- if (l, m) not in l_m_combinations:
- l_m_combinations.add((l, m))
- initial_prob = 1 / (l + 1)
- if initial_prob < IBMModel.MIN_PROB:
- warnings.warn(
- "A source sentence is too long ("
- + str(l)
- + " words). Results may be less accurate."
- )
- for i in range(0, l + 1):
- for j in range(1, m + 1):
- self.alignment_table[i][j][l][m] = initial_prob
- def train(self, parallel_corpus):
- counts = Model2Counts()
- for aligned_sentence in parallel_corpus:
- src_sentence = [None] + aligned_sentence.mots
- trg_sentence = ['UNUSED'] + aligned_sentence.words # 1-indexed
- l = len(aligned_sentence.mots)
- m = len(aligned_sentence.words)
- # E step (a): Compute normalization factors to weigh counts
- total_count = self.prob_all_alignments(src_sentence, trg_sentence)
- # E step (b): Collect counts
- for j in range(1, m + 1):
- t = trg_sentence[j]
- for i in range(0, l + 1):
- s = src_sentence[i]
- count = self.prob_alignment_point(i, j, src_sentence, trg_sentence)
- normalized_count = count / total_count[t]
- counts.update_lexical_translation(normalized_count, s, t)
- counts.update_alignment(normalized_count, i, j, l, m)
- # M step: Update probabilities with maximum likelihood estimates
- self.maximize_lexical_translation_probabilities(counts)
- self.maximize_alignment_probabilities(counts)
- def maximize_alignment_probabilities(self, counts):
- MIN_PROB = IBMModel.MIN_PROB
- for i, j_s in counts.alignment.items():
- for j, src_sentence_lengths in j_s.items():
- for l, trg_sentence_lengths in src_sentence_lengths.items():
- for m in trg_sentence_lengths:
- estimate = (
- counts.alignment[i][j][l][m]
- / counts.alignment_for_any_i[j][l][m]
- )
- self.alignment_table[i][j][l][m] = max(estimate, MIN_PROB)
- def prob_all_alignments(self, src_sentence, trg_sentence):
- """
- Computes the probability of all possible word alignments,
- expressed as a marginal distribution over target words t
- Each entry in the return value represents the contribution to
- the total alignment probability by the target word t.
- To obtain probability(alignment | src_sentence, trg_sentence),
- simply sum the entries in the return value.
- :return: Probability of t for all s in ``src_sentence``
- :rtype: dict(str): float
- """
- alignment_prob_for_t = defaultdict(lambda: 0.0)
- for j in range(1, len(trg_sentence)):
- t = trg_sentence[j]
- for i in range(0, len(src_sentence)):
- alignment_prob_for_t[t] += self.prob_alignment_point(
- i, j, src_sentence, trg_sentence
- )
- return alignment_prob_for_t
- def prob_alignment_point(self, i, j, src_sentence, trg_sentence):
- """
- Probability that position j in ``trg_sentence`` is aligned to
- position i in the ``src_sentence``
- """
- l = len(src_sentence) - 1
- m = len(trg_sentence) - 1
- s = src_sentence[i]
- t = trg_sentence[j]
- return self.translation_table[t][s] * self.alignment_table[i][j][l][m]
- def prob_t_a_given_s(self, alignment_info):
- """
- Probability of target sentence and an alignment given the
- source sentence
- """
- prob = 1.0
- l = len(alignment_info.src_sentence) - 1
- m = len(alignment_info.trg_sentence) - 1
- for j, i in enumerate(alignment_info.alignment):
- if j == 0:
- continue # skip the dummy zeroeth element
- trg_word = alignment_info.trg_sentence[j]
- src_word = alignment_info.src_sentence[i]
- prob *= (
- self.translation_table[trg_word][src_word]
- * self.alignment_table[i][j][l][m]
- )
- return max(prob, IBMModel.MIN_PROB)
- def align_all(self, parallel_corpus):
- for sentence_pair in parallel_corpus:
- self.align(sentence_pair)
- def align(self, sentence_pair):
- """
- Determines the best word alignment for one sentence pair from
- the corpus that the model was trained on.
- The best alignment will be set in ``sentence_pair`` when the
- method returns. In contrast with the internal implementation of
- IBM models, the word indices in the ``Alignment`` are zero-
- indexed, not one-indexed.
- :param sentence_pair: A sentence in the source language and its
- counterpart sentence in the target language
- :type sentence_pair: AlignedSent
- """
- best_alignment = []
- l = len(sentence_pair.mots)
- m = len(sentence_pair.words)
- for j, trg_word in enumerate(sentence_pair.words):
- # Initialize trg_word to align with the NULL token
- best_prob = (
- self.translation_table[trg_word][None]
- * self.alignment_table[0][j + 1][l][m]
- )
- best_prob = max(best_prob, IBMModel.MIN_PROB)
- best_alignment_point = None
- for i, src_word in enumerate(sentence_pair.mots):
- align_prob = (
- self.translation_table[trg_word][src_word]
- * self.alignment_table[i + 1][j + 1][l][m]
- )
- if align_prob >= best_prob:
- best_prob = align_prob
- best_alignment_point = i
- best_alignment.append((j, best_alignment_point))
- sentence_pair.alignment = Alignment(best_alignment)
- class Model2Counts(Counts):
- """
- Data object to store counts of various parameters during training.
- Includes counts for alignment.
- """
- def __init__(self):
- super(Model2Counts, self).__init__()
- self.alignment = defaultdict(
- lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: 0.0)))
- )
- self.alignment_for_any_i = defaultdict(
- lambda: defaultdict(lambda: defaultdict(lambda: 0.0))
- )
- def update_lexical_translation(self, count, s, t):
- self.t_given_s[t][s] += count
- self.any_t_given_s[s] += count
- def update_alignment(self, count, i, j, l, m):
- self.alignment[i][j][l][m] += count
- self.alignment_for_any_i[j][l][m] += count
|