123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491 |
- # -*- coding: utf-8 -*-
- # Natural Language Toolkit: IBM Model 4
- #
- # Copyright (C) 2001-2019 NLTK Project
- # Author: Tah Wei Hoon <hoon.tw@gmail.com>
- # URL: <http://nltk.org/>
- # For license information, see LICENSE.TXT
- """
- Translation model that reorders output words based on their type and
- distance from other related words in the output sentence.
- IBM Model 4 improves the distortion model of Model 3, motivated by the
- observation that certain words tend to be re-ordered in a predictable
- way relative to one another. For example, <adjective><noun> in English
- usually has its order flipped as <noun><adjective> in French.
- Model 4 requires words in the source and target vocabularies to be
- categorized into classes. This can be linguistically driven, like parts
- of speech (adjective, nouns, prepositions, etc). Word classes can also
- be obtained by statistical methods. The original IBM Model 4 uses an
- information theoretic approach to group words into 50 classes for each
- vocabulary.
- Terminology:
- Cept:
- A source word with non-zero fertility i.e. aligned to one or more
- target words.
- Tablet:
- The set of target word(s) aligned to a cept.
- Head of cept:
- The first word of the tablet of that cept.
- Center of cept:
- The average position of the words in that cept's tablet. If the
- value is not an integer, the ceiling is taken.
- For example, for a tablet with words in positions 2, 5, 6 in the
- target sentence, the center of the corresponding cept is
- ceil((2 + 5 + 6) / 3) = 5
- Displacement:
- For a head word, defined as (position of head word - position of
- previous cept's center). Can be positive or negative.
- For a non-head word, defined as (position of non-head word -
- position of previous word in the same tablet). Always positive,
- because successive words in a tablet are assumed to appear to the
- right of the previous word.
- In contrast to Model 3 which reorders words in a tablet independently of
- other words, Model 4 distinguishes between three cases.
- (1) Words generated by NULL are distributed uniformly.
- (2) For a head word t, its position is modeled by the probability
- d_head(displacement | word_class_s(s),word_class_t(t)),
- where s is the previous cept, and word_class_s and word_class_t maps
- s and t to a source and target language word class respectively.
- (3) For a non-head word t, its position is modeled by the probability
- d_non_head(displacement | word_class_t(t))
- The EM algorithm used in Model 4 is:
- E step - In the training data, collect counts, weighted by prior
- probabilities.
- (a) count how many times a source language word is translated
- into a target language word
- (b) for a particular word class, count how many times a head
- word is located at a particular displacement from the
- previous cept's center
- (c) for a particular word class, count how many times a
- non-head word is located at a particular displacement from
- the previous target word
- (d) count how many times a source word is aligned to phi number
- of target words
- (e) count how many times NULL is aligned to a target word
- M step - Estimate new probabilities based on the counts from the E step
- Like Model 3, there are too many possible alignments to consider. Thus,
- a hill climbing approach is used to sample good candidates.
- Notations:
- i: Position in the source sentence
- Valid values are 0 (for NULL), 1, 2, ..., length of source sentence
- j: Position in the target sentence
- Valid values are 1, 2, ..., length of target sentence
- l: Number of words in the source sentence, excluding NULL
- m: Number of words in the target sentence
- s: A word in the source language
- t: A word in the target language
- phi: Fertility, the number of target words produced by a source word
- p1: Probability that a target word produced by a source word is
- accompanied by another target word that is aligned to NULL
- p0: 1 - p1
- dj: Displacement, Δj
- References:
- Philipp Koehn. 2010. Statistical Machine Translation.
- Cambridge University Press, New York.
- Peter E Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and
- Robert L. Mercer. 1993. The Mathematics of Statistical Machine
- Translation: Parameter Estimation. Computational Linguistics, 19 (2),
- 263-311.
- """
- from __future__ import division
- import warnings
- from collections import defaultdict
- from math import factorial
- from nltk.translate import AlignedSent
- from nltk.translate import Alignment
- from nltk.translate import IBMModel
- from nltk.translate import IBMModel3
- from nltk.translate.ibm_model import Counts
- from nltk.translate.ibm_model import longest_target_sentence_length
- class IBMModel4(IBMModel):
- """
- Translation model that reorders output words based on their type and
- their distance from other related words in the output sentence
- >>> bitext = []
- >>> bitext.append(AlignedSent(['klein', 'ist', 'das', 'haus'], ['the', 'house', 'is', 'small']))
- >>> bitext.append(AlignedSent(['das', 'haus', 'war', 'ja', 'groß'], ['the', 'house', 'was', 'big']))
- >>> bitext.append(AlignedSent(['das', 'buch', 'ist', 'ja', 'klein'], ['the', 'book', 'is', 'small']))
- >>> bitext.append(AlignedSent(['ein', 'haus', 'ist', 'klein'], ['a', 'house', 'is', 'small']))
- >>> bitext.append(AlignedSent(['das', 'haus'], ['the', 'house']))
- >>> bitext.append(AlignedSent(['das', 'buch'], ['the', 'book']))
- >>> bitext.append(AlignedSent(['ein', 'buch'], ['a', 'book']))
- >>> bitext.append(AlignedSent(['ich', 'fasse', 'das', 'buch', 'zusammen'], ['i', 'summarize', 'the', 'book']))
- >>> bitext.append(AlignedSent(['fasse', 'zusammen'], ['summarize']))
- >>> src_classes = {'the': 0, 'a': 0, 'small': 1, 'big': 1, 'house': 2, 'book': 2, 'is': 3, 'was': 3, 'i': 4, 'summarize': 5 }
- >>> trg_classes = {'das': 0, 'ein': 0, 'haus': 1, 'buch': 1, 'klein': 2, 'groß': 2, 'ist': 3, 'war': 3, 'ja': 4, 'ich': 5, 'fasse': 6, 'zusammen': 6 }
- >>> ibm4 = IBMModel4(bitext, 5, src_classes, trg_classes)
- >>> print(round(ibm4.translation_table['buch']['book'], 3))
- 1.0
- >>> print(round(ibm4.translation_table['das']['book'], 3))
- 0.0
- >>> print(round(ibm4.translation_table['ja'][None], 3))
- 1.0
- >>> print(round(ibm4.head_distortion_table[1][0][1], 3))
- 1.0
- >>> print(round(ibm4.head_distortion_table[2][0][1], 3))
- 0.0
- >>> print(round(ibm4.non_head_distortion_table[3][6], 3))
- 0.5
- >>> print(round(ibm4.fertility_table[2]['summarize'], 3))
- 1.0
- >>> print(round(ibm4.fertility_table[1]['book'], 3))
- 1.0
- >>> print(ibm4.p1)
- 0.033...
- >>> test_sentence = bitext[2]
- >>> test_sentence.words
- ['das', 'buch', 'ist', 'ja', 'klein']
- >>> test_sentence.mots
- ['the', 'book', 'is', 'small']
- >>> test_sentence.alignment
- Alignment([(0, 0), (1, 1), (2, 2), (3, None), (4, 3)])
- """
- def __init__(
- self,
- sentence_aligned_corpus,
- iterations,
- source_word_classes,
- target_word_classes,
- probability_tables=None,
- ):
- """
- Train on ``sentence_aligned_corpus`` and create a lexical
- translation model, distortion models, a fertility model, and a
- model for generating NULL-aligned words.
- Translation direction is from ``AlignedSent.mots`` to
- ``AlignedSent.words``.
- :param sentence_aligned_corpus: Sentence-aligned parallel corpus
- :type sentence_aligned_corpus: list(AlignedSent)
- :param iterations: Number of iterations to run training algorithm
- :type iterations: int
- :param source_word_classes: Lookup table that maps a source word
- to its word class, the latter represented by an integer id
- :type source_word_classes: dict[str]: int
- :param target_word_classes: Lookup table that maps a target word
- to its word class, the latter represented by an integer id
- :type target_word_classes: dict[str]: int
- :param probability_tables: Optional. Use this to pass in custom
- probability values. If not specified, probabilities will be
- set to a uniform distribution, or some other sensible value.
- If specified, all the following entries must be present:
- ``translation_table``, ``alignment_table``,
- ``fertility_table``, ``p1``, ``head_distortion_table``,
- ``non_head_distortion_table``. See ``IBMModel`` and
- ``IBMModel4`` for the type and purpose of these tables.
- :type probability_tables: dict[str]: object
- """
- super(IBMModel4, self).__init__(sentence_aligned_corpus)
- self.reset_probabilities()
- self.src_classes = source_word_classes
- self.trg_classes = target_word_classes
- if probability_tables is None:
- # Get probabilities from IBM model 3
- ibm3 = IBMModel3(sentence_aligned_corpus, iterations)
- self.translation_table = ibm3.translation_table
- self.alignment_table = ibm3.alignment_table
- self.fertility_table = ibm3.fertility_table
- self.p1 = ibm3.p1
- self.set_uniform_probabilities(sentence_aligned_corpus)
- else:
- # Set user-defined probabilities
- self.translation_table = probability_tables['translation_table']
- self.alignment_table = probability_tables['alignment_table']
- self.fertility_table = probability_tables['fertility_table']
- self.p1 = probability_tables['p1']
- self.head_distortion_table = probability_tables['head_distortion_table']
- self.non_head_distortion_table = probability_tables[
- 'non_head_distortion_table'
- ]
- for n in range(0, iterations):
- self.train(sentence_aligned_corpus)
- def reset_probabilities(self):
- super(IBMModel4, self).reset_probabilities()
- self.head_distortion_table = defaultdict(
- lambda: defaultdict(lambda: defaultdict(lambda: self.MIN_PROB))
- )
- """
- dict[int][int][int]: float. Probability(displacement of head
- word | word class of previous cept,target word class).
- Values accessed as ``distortion_table[dj][src_class][trg_class]``.
- """
- self.non_head_distortion_table = defaultdict(
- lambda: defaultdict(lambda: self.MIN_PROB)
- )
- """
- dict[int][int]: float. Probability(displacement of non-head
- word | target word class).
- Values accessed as ``distortion_table[dj][trg_class]``.
- """
- def set_uniform_probabilities(self, sentence_aligned_corpus):
- """
- Set distortion probabilities uniformly to
- 1 / cardinality of displacement values
- """
- max_m = longest_target_sentence_length(sentence_aligned_corpus)
- # The maximum displacement is m-1, when a word is in the last
- # position m of the target sentence and the previously placed
- # word is in the first position.
- # Conversely, the minimum displacement is -(m-1).
- # Thus, the displacement range is (m-1) - (-(m-1)). Note that
- # displacement cannot be zero and is not included in the range.
- if max_m <= 1:
- initial_prob = IBMModel.MIN_PROB
- else:
- initial_prob = 1 / (2 * (max_m - 1))
- if initial_prob < IBMModel.MIN_PROB:
- warnings.warn(
- "A target sentence is too long ("
- + str(max_m)
- + " words). Results may be less accurate."
- )
- for dj in range(1, max_m):
- self.head_distortion_table[dj] = defaultdict(
- lambda: defaultdict(lambda: initial_prob)
- )
- self.head_distortion_table[-dj] = defaultdict(
- lambda: defaultdict(lambda: initial_prob)
- )
- self.non_head_distortion_table[dj] = defaultdict(lambda: initial_prob)
- self.non_head_distortion_table[-dj] = defaultdict(lambda: initial_prob)
- def train(self, parallel_corpus):
- counts = Model4Counts()
- for aligned_sentence in parallel_corpus:
- m = len(aligned_sentence.words)
- # Sample the alignment space
- sampled_alignments, best_alignment = self.sample(aligned_sentence)
- # Record the most probable alignment
- aligned_sentence.alignment = Alignment(
- best_alignment.zero_indexed_alignment()
- )
- # E step (a): Compute normalization factors to weigh counts
- total_count = self.prob_of_alignments(sampled_alignments)
- # E step (b): Collect counts
- for alignment_info in sampled_alignments:
- count = self.prob_t_a_given_s(alignment_info)
- normalized_count = count / total_count
- for j in range(1, m + 1):
- counts.update_lexical_translation(
- normalized_count, alignment_info, j
- )
- counts.update_distortion(
- normalized_count,
- alignment_info,
- j,
- self.src_classes,
- self.trg_classes,
- )
- counts.update_null_generation(normalized_count, alignment_info)
- counts.update_fertility(normalized_count, alignment_info)
- # M step: Update probabilities with maximum likelihood estimates
- # If any probability is less than MIN_PROB, clamp it to MIN_PROB
- existing_alignment_table = self.alignment_table
- self.reset_probabilities()
- self.alignment_table = existing_alignment_table # don't retrain
- self.maximize_lexical_translation_probabilities(counts)
- self.maximize_distortion_probabilities(counts)
- self.maximize_fertility_probabilities(counts)
- self.maximize_null_generation_probabilities(counts)
- def maximize_distortion_probabilities(self, counts):
- head_d_table = self.head_distortion_table
- for dj, src_classes in counts.head_distortion.items():
- for s_cls, trg_classes in src_classes.items():
- for t_cls in trg_classes:
- estimate = (
- counts.head_distortion[dj][s_cls][t_cls]
- / counts.head_distortion_for_any_dj[s_cls][t_cls]
- )
- head_d_table[dj][s_cls][t_cls] = max(estimate, IBMModel.MIN_PROB)
- non_head_d_table = self.non_head_distortion_table
- for dj, trg_classes in counts.non_head_distortion.items():
- for t_cls in trg_classes:
- estimate = (
- counts.non_head_distortion[dj][t_cls]
- / counts.non_head_distortion_for_any_dj[t_cls]
- )
- non_head_d_table[dj][t_cls] = max(estimate, IBMModel.MIN_PROB)
- def prob_t_a_given_s(self, alignment_info):
- """
- Probability of target sentence and an alignment given the
- source sentence
- """
- return IBMModel4.model4_prob_t_a_given_s(alignment_info, self)
- @staticmethod # exposed for Model 5 to use
- def model4_prob_t_a_given_s(alignment_info, ibm_model):
- probability = 1.0
- MIN_PROB = IBMModel.MIN_PROB
- def null_generation_term():
- # Binomial distribution: B(m - null_fertility, p1)
- value = 1.0
- p1 = ibm_model.p1
- p0 = 1 - p1
- null_fertility = alignment_info.fertility_of_i(0)
- m = len(alignment_info.trg_sentence) - 1
- value *= pow(p1, null_fertility) * pow(p0, m - 2 * null_fertility)
- if value < MIN_PROB:
- return MIN_PROB
- # Combination: (m - null_fertility) choose null_fertility
- for i in range(1, null_fertility + 1):
- value *= (m - null_fertility - i + 1) / i
- return value
- def fertility_term():
- value = 1.0
- src_sentence = alignment_info.src_sentence
- for i in range(1, len(src_sentence)):
- fertility = alignment_info.fertility_of_i(i)
- value *= (
- factorial(fertility)
- * ibm_model.fertility_table[fertility][src_sentence[i]]
- )
- if value < MIN_PROB:
- return MIN_PROB
- return value
- def lexical_translation_term(j):
- t = alignment_info.trg_sentence[j]
- i = alignment_info.alignment[j]
- s = alignment_info.src_sentence[i]
- return ibm_model.translation_table[t][s]
- def distortion_term(j):
- t = alignment_info.trg_sentence[j]
- i = alignment_info.alignment[j]
- if i == 0:
- # case 1: t is aligned to NULL
- return 1.0
- if alignment_info.is_head_word(j):
- # case 2: t is the first word of a tablet
- previous_cept = alignment_info.previous_cept(j)
- src_class = None
- if previous_cept is not None:
- previous_s = alignment_info.src_sentence[previous_cept]
- src_class = ibm_model.src_classes[previous_s]
- trg_class = ibm_model.trg_classes[t]
- dj = j - alignment_info.center_of_cept(previous_cept)
- return ibm_model.head_distortion_table[dj][src_class][trg_class]
- # case 3: t is a subsequent word of a tablet
- previous_position = alignment_info.previous_in_tablet(j)
- trg_class = ibm_model.trg_classes[t]
- dj = j - previous_position
- return ibm_model.non_head_distortion_table[dj][trg_class]
- # end nested functions
- # Abort computation whenever probability falls below MIN_PROB at
- # any point, since MIN_PROB can be considered as zero
- probability *= null_generation_term()
- if probability < MIN_PROB:
- return MIN_PROB
- probability *= fertility_term()
- if probability < MIN_PROB:
- return MIN_PROB
- for j in range(1, len(alignment_info.trg_sentence)):
- probability *= lexical_translation_term(j)
- if probability < MIN_PROB:
- return MIN_PROB
- probability *= distortion_term(j)
- if probability < MIN_PROB:
- return MIN_PROB
- return probability
- class Model4Counts(Counts):
- """
- Data object to store counts of various parameters during training.
- Includes counts for distortion.
- """
- def __init__(self):
- super(Model4Counts, self).__init__()
- self.head_distortion = defaultdict(
- lambda: defaultdict(lambda: defaultdict(lambda: 0.0))
- )
- self.head_distortion_for_any_dj = defaultdict(lambda: defaultdict(lambda: 0.0))
- self.non_head_distortion = defaultdict(lambda: defaultdict(lambda: 0.0))
- self.non_head_distortion_for_any_dj = defaultdict(lambda: 0.0)
- def update_distortion(self, count, alignment_info, j, src_classes, trg_classes):
- i = alignment_info.alignment[j]
- t = alignment_info.trg_sentence[j]
- if i == 0:
- # case 1: t is aligned to NULL
- pass
- elif alignment_info.is_head_word(j):
- # case 2: t is the first word of a tablet
- previous_cept = alignment_info.previous_cept(j)
- if previous_cept is not None:
- previous_src_word = alignment_info.src_sentence[previous_cept]
- src_class = src_classes[previous_src_word]
- else:
- src_class = None
- trg_class = trg_classes[t]
- dj = j - alignment_info.center_of_cept(previous_cept)
- self.head_distortion[dj][src_class][trg_class] += count
- self.head_distortion_for_any_dj[src_class][trg_class] += count
- else:
- # case 3: t is a subsequent word of a tablet
- previous_j = alignment_info.previous_in_tablet(j)
- trg_class = trg_classes[t]
- dj = j - previous_j
- self.non_head_distortion[dj][trg_class] += count
- self.non_head_distortion_for_any_dj[trg_class] += count
|