123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191 |
- # coding: utf8
- import numpy as np
- import pandas
- import csv
- from math import sqrt
- from sklearn.cluster import DBSCAN
- from sklearn import metrics
- from sklearn.metrics import davies_bouldin_score
- import time
- def get_average_xy(list_input, path):
- csv_name = path+"/temporary/list_to_csv_with_corner_points.csv"
- resultFile = open(csv_name, 'w')
- wr = csv.writer(resultFile, delimiter=";")
- wr.writerow(["element", "xmin","ymin","xmax","ymax", "ausrichtung","point_xmi_ymi","point_xma_ymi","point_xmi_yma","point_xma_yma"])
- result_df = pandas.DataFrame(columns=["point_xmi_ymi","point_xma_ymi","point_xmi_yma","point_xma_yma","ausrichtung"])
- for element in list_input:
- ymin = 100000000
- ymax = 0
- xmin = 100000000
- xmax = 0
- newList = []
- if len(element) == 5 and not isinstance(element[0], list):
- newList.append(element)
- element = newList
- for blub in element: #get the smallest and largest x and y value for whole block
- if isinstance(blub[0],list) and len(blub[0]) == 5:
- blub = blub [0]
- if float(blub[1]) < ymin:
- ymin = float(blub[1])
- if float(blub[0]) < xmin:
- xmin = float(blub[0])
- if float(blub[3]) > ymax:
- ymax = float(blub[3])
- if float(blub[2]) > xmax:
- xmax = float(blub[2])
- if float(xmax)-float(xmin) > 1.3*(float(ymax)-float(ymin)):
- ausrichtung = 0 # horizontal
- #elif
- elif 1.3*(float(xmax)-float(xmin)) < float(ymax)-float(ymin):
- ausrichtung = 1 # vertikal
- else:
- ausrichtung = 3 # sonstiges
- ##### GET CORNER POINTS
- point_xmi_ymi = [xmin,ymin]
- point_xma_ymi = [xmax,ymin]
- point_xmi_yma = [xmin,ymax]
- point_xma_yma = [xmax,ymax]
- wr.writerow([element,xmin,ymin,xmax,ymax, ausrichtung,point_xmi_ymi,point_xma_ymi,point_xmi_yma,point_xma_yma])
- result_df.loc[len(result_df)]=[point_xmi_ymi,point_xma_ymi, point_xmi_yma, point_xma_yma,ausrichtung]
- resultFile.close()
- return result_df
- def intersects(rectangle1, rectangle2): #using the separating axis theorem, returns true if they intersect, otherwise false
- rect_1_min = eval(rectangle1[0])
- rect_1_max = eval(rectangle1[3])
- rect1_bottom_left_x = rect_1_min[0]
- rect1_top_right_x = rect_1_max[0]
- rect1_bottom_left_y = rect_1_max[1]
- rect1_top_right_y = rect_1_min[1]
- rect_2_min = eval(rectangle2[0])
- rect_2_max = eval(rectangle2[3])
- rect2_bottom_left_x = rect_2_min[0]
- rect2_top_right_x = rect_2_max[0]
- rect2_bottom_left_y = rect_2_max[1]
- rect2_top_right_y = rect_2_min[1]
- return not (rect1_top_right_x < rect2_bottom_left_x or rect1_bottom_left_x > rect2_top_right_x or rect1_top_right_y > rect2_bottom_left_y or rect1_bottom_left_y < rect2_top_right_y)
- def get_ausrichtung(rectangle1,rectangle2):
- #check if rect 1 and rect 2 are above or beside, r,l, a,b
- min_1 = eval(rectangle1[0])
- min_2 = eval(rectangle2[0])
- diff_y = min_1[1] - min_2[1]
- diff_x = min_1[0] - min_2[0]
- if diff_x < diff_y:
- ausrichtung = "above"
- else:
- ausrichtung = "side"
- return ausrichtung
- def get_parallel(rectangle1, rectangle2):
- parallel = False
- ausrichtung_1 = eval(rectangle1[4])
- ausrichtung_2 = eval(rectangle2[4])
- if ausrichtung_1 == ausrichtung_2 and ausrichtung_1 == 0:
- ausrichtung = get_ausrichtung(rectangle1, rectangle2)
- if ausrichtung == "above":
- parallel = True
- if ausrichtung_1 == ausrichtung_2 and ausrichtung_1 == 1:
- ausrichtung = get_ausrichtung(rectangle1, rectangle2)
- if ausrichtung == "side":
- parallel = True
- return parallel
- def dist(rectangle1, rectangle2):
- #get minimal distance between two rectangles
- distance = 100000000
- second_dist = 100000
- for point1 in rectangle1[:4]:
- point1 = eval(point1)
- for point2 in rectangle2[:4]:
- point2 = eval(point2)
- dist = sqrt((float(point2[0]) - float(point1[0]))**2 + ((float(point2[1]) - float(point1[1])))**2)
- if dist < distance:
- second_dist = distance
- distance = dist
- if get_parallel(rectangle1,rectangle2):
- distance += 1000
- second_dist += 1000
- if intersects(rectangle1, rectangle2):
- distance = 0
- second_dist = 0
- distance = (distance+second_dist)/2
- return distance
- def clustering(dm,eps,path):
- db = DBSCAN(eps=eps, min_samples=1, metric="precomputed").fit(dm)
- labels = db.labels_
- n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
- print('Estimated number of clusters: %d' % n_clusters_)
- data_df = pandas.read_csv(path +"/temporary/list_to_csv_with_corner_points.csv", sep=";")
- data_df["cluster"] = labels
- try:
- dbs = davies_bouldin_score(dm, labels)
- #dbs = "1"
- chs = metrics.calinski_harabasz_score(dm, labels)
- #chs = 1
- silhoutte = metrics.silhouette_score(dm, labels, metric='precomputed')
- #silhoutte = 2
- print("DBscore: ", dbs)
- print("calsinski: ", chs)
- print("silhoutte: ", silhoutte)
- except:
- dbs=1
- chs=1
- silhoutte=1
- data_df["ausrichtung"] = 1
- data_df = data_df.groupby(['cluster', 'ausrichtung'])['element'].apply(','.join).reset_index()
- data_df.to_csv(path+"/temporary/values_clusteredfrom_precomputed_dbscan.csv",sep=";", header=False, index=False)
- return data_df, n_clusters_, dbs, chs, silhoutte
- def cluster_and_preprocess(result,eps,path):
- start_time = time.time()
- result = get_average_xy(result, path) #input: array of arrays, output: either csv file or array of arrays
- end_time = time.time()
- time_taken_get_average = end_time - start_time
- print("time get average: ", time_taken_get_average)
- start_time = time.time()
- result.to_csv(path+"/temporary/blub.csv", sep=";", index=False, header=None)
- end_time = time.time()
- time_taken_tocsv = end_time - start_time
- print("time to csv:" , time_taken_tocsv)
- with open(path+"/temporary/blub.csv") as csvfile:
- readCSV = csv.reader(csvfile, delimiter=';')
- result = list(readCSV)
- start_time = time.time()
- dm = np.asarray([[dist(p1, p2) for p2 in result] for p1 in result])
- end_time = time.time()
- time_taken_dm = end_time - start_time
- print("time dm:" , time_taken_dm)
- start_time = time.time()
- clustering_result, n_clusters_, dbs, chs, silhoutte = clustering(dm,float(eps), path)
- end_time = time.time()
- time_taken_clustering = end_time - start_time
- print("time clustering:" , time_taken_clustering)
- return clustering_result, n_clusters_, dbs, chs, silhoutte, dm
|