queue.h 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654
  1. /* $OpenBSD: queue.h,v 1.38 2013/07/03 15:05:21 fgsch Exp $ */
  2. /* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */
  3. /*
  4. * Copyright (c) 1991, 1993
  5. * The Regents of the University of California. All rights reserved.
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions
  9. * are met:
  10. * 1. Redistributions of source code must retain the above copyright
  11. * notice, this list of conditions and the following disclaimer.
  12. * 2. Redistributions in binary form must reproduce the above copyright
  13. * notice, this list of conditions and the following disclaimer in the
  14. * documentation and/or other materials provided with the distribution.
  15. * 3. Neither the name of the University nor the names of its contributors
  16. * may be used to endorse or promote products derived from this software
  17. * without specific prior written permission.
  18. *
  19. * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  20. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  21. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  22. * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  23. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  24. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  25. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  26. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  27. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  28. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  29. * SUCH DAMAGE.
  30. *
  31. * @(#)queue.h 8.5 (Berkeley) 8/20/94
  32. */
  33. #ifndef _SYS_QUEUE_H_
  34. #define _SYS_QUEUE_H_
  35. /*
  36. * This file defines five types of data structures: singly-linked lists,
  37. * lists, simple queues, tail queues, and circular queues.
  38. *
  39. *
  40. * A singly-linked list is headed by a single forward pointer. The elements
  41. * are singly linked for minimum space and pointer manipulation overhead at
  42. * the expense of O(n) removal for arbitrary elements. New elements can be
  43. * added to the list after an existing element or at the head of the list.
  44. * Elements being removed from the head of the list should use the explicit
  45. * macro for this purpose for optimum efficiency. A singly-linked list may
  46. * only be traversed in the forward direction. Singly-linked lists are ideal
  47. * for applications with large datasets and few or no removals or for
  48. * implementing a LIFO queue.
  49. *
  50. * A list is headed by a single forward pointer (or an array of forward
  51. * pointers for a hash table header). The elements are doubly linked
  52. * so that an arbitrary element can be removed without a need to
  53. * traverse the list. New elements can be added to the list before
  54. * or after an existing element or at the head of the list. A list
  55. * may only be traversed in the forward direction.
  56. *
  57. * A simple queue is headed by a pair of pointers, one the head of the
  58. * list and the other to the tail of the list. The elements are singly
  59. * linked to save space, so elements can only be removed from the
  60. * head of the list. New elements can be added to the list before or after
  61. * an existing element, at the head of the list, or at the end of the
  62. * list. A simple queue may only be traversed in the forward direction.
  63. *
  64. * A tail queue is headed by a pair of pointers, one to the head of the
  65. * list and the other to the tail of the list. The elements are doubly
  66. * linked so that an arbitrary element can be removed without a need to
  67. * traverse the list. New elements can be added to the list before or
  68. * after an existing element, at the head of the list, or at the end of
  69. * the list. A tail queue may be traversed in either direction.
  70. *
  71. * A circle queue is headed by a pair of pointers, one to the head of the
  72. * list and the other to the tail of the list. The elements are doubly
  73. * linked so that an arbitrary element can be removed without a need to
  74. * traverse the list. New elements can be added to the list before or after
  75. * an existing element, at the head of the list, or at the end of the list.
  76. * A circle queue may be traversed in either direction, but has a more
  77. * complex end of list detection.
  78. *
  79. * For details on the use of these macros, see the queue(3) manual page.
  80. */
  81. #if defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC))
  82. #define _Q_INVALIDATE(a) (a) = ((void *)-1)
  83. #else
  84. #define _Q_INVALIDATE(a)
  85. #endif
  86. /*
  87. * Singly-linked List definitions.
  88. */
  89. #define SLIST_HEAD(name, type) \
  90. struct name { \
  91. struct type *slh_first; /* first element */ \
  92. }
  93. #define SLIST_HEAD_INITIALIZER(head) \
  94. { NULL }
  95. /* Fix redefinition of SLIST_ENTRY on mingw winnt.h */
  96. # ifdef SLIST_ENTRY
  97. # undef SLIST_ENTRY
  98. # endif
  99. #define SLIST_ENTRY(type) \
  100. struct { \
  101. struct type *sle_next; /* next element */ \
  102. }
  103. /*
  104. * Singly-linked List access methods.
  105. */
  106. #define SLIST_FIRST(head) ((head)->slh_first)
  107. #define SLIST_END(head) NULL
  108. #define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head))
  109. #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
  110. #define SLIST_FOREACH(var, head, field) \
  111. for((var) = SLIST_FIRST(head); \
  112. (var) != SLIST_END(head); \
  113. (var) = SLIST_NEXT(var, field))
  114. #define SLIST_FOREACH_SAFE(var, head, field, tvar) \
  115. for ((var) = SLIST_FIRST(head); \
  116. (var) && ((tvar) = SLIST_NEXT(var, field), 1); \
  117. (var) = (tvar))
  118. /*
  119. * Singly-linked List functions.
  120. */
  121. #define SLIST_INIT(head) { \
  122. SLIST_FIRST(head) = SLIST_END(head); \
  123. }
  124. #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
  125. (elm)->field.sle_next = (slistelm)->field.sle_next; \
  126. (slistelm)->field.sle_next = (elm); \
  127. } while (0)
  128. #define SLIST_INSERT_HEAD(head, elm, field) do { \
  129. (elm)->field.sle_next = (head)->slh_first; \
  130. (head)->slh_first = (elm); \
  131. } while (0)
  132. #define SLIST_REMOVE_AFTER(elm, field) do { \
  133. (elm)->field.sle_next = (elm)->field.sle_next->field.sle_next; \
  134. } while (0)
  135. #define SLIST_REMOVE_HEAD(head, field) do { \
  136. (head)->slh_first = (head)->slh_first->field.sle_next; \
  137. } while (0)
  138. #define SLIST_REMOVE(head, elm, type, field) do { \
  139. if ((head)->slh_first == (elm)) { \
  140. SLIST_REMOVE_HEAD((head), field); \
  141. } else { \
  142. struct type *curelm = (head)->slh_first; \
  143. \
  144. while (curelm->field.sle_next != (elm)) \
  145. curelm = curelm->field.sle_next; \
  146. curelm->field.sle_next = \
  147. curelm->field.sle_next->field.sle_next; \
  148. _Q_INVALIDATE((elm)->field.sle_next); \
  149. } \
  150. } while (0)
  151. /*
  152. * List definitions.
  153. */
  154. #define LIST_HEAD(name, type) \
  155. struct name { \
  156. struct type *lh_first; /* first element */ \
  157. }
  158. #define LIST_HEAD_INITIALIZER(head) \
  159. { NULL }
  160. #define LIST_ENTRY(type) \
  161. struct { \
  162. struct type *le_next; /* next element */ \
  163. struct type **le_prev; /* address of previous next element */ \
  164. }
  165. /*
  166. * List access methods
  167. */
  168. #define LIST_FIRST(head) ((head)->lh_first)
  169. #define LIST_END(head) NULL
  170. #define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head))
  171. #define LIST_NEXT(elm, field) ((elm)->field.le_next)
  172. #define LIST_FOREACH(var, head, field) \
  173. for((var) = LIST_FIRST(head); \
  174. (var)!= LIST_END(head); \
  175. (var) = LIST_NEXT(var, field))
  176. #define LIST_FOREACH_SAFE(var, head, field, tvar) \
  177. for ((var) = LIST_FIRST(head); \
  178. (var) && ((tvar) = LIST_NEXT(var, field), 1); \
  179. (var) = (tvar))
  180. /*
  181. * List functions.
  182. */
  183. #define LIST_INIT(head) do { \
  184. LIST_FIRST(head) = LIST_END(head); \
  185. } while (0)
  186. #define LIST_INSERT_AFTER(listelm, elm, field) do { \
  187. if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
  188. (listelm)->field.le_next->field.le_prev = \
  189. &(elm)->field.le_next; \
  190. (listelm)->field.le_next = (elm); \
  191. (elm)->field.le_prev = &(listelm)->field.le_next; \
  192. } while (0)
  193. #define LIST_INSERT_BEFORE(listelm, elm, field) do { \
  194. (elm)->field.le_prev = (listelm)->field.le_prev; \
  195. (elm)->field.le_next = (listelm); \
  196. *(listelm)->field.le_prev = (elm); \
  197. (listelm)->field.le_prev = &(elm)->field.le_next; \
  198. } while (0)
  199. #define LIST_INSERT_HEAD(head, elm, field) do { \
  200. if (((elm)->field.le_next = (head)->lh_first) != NULL) \
  201. (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
  202. (head)->lh_first = (elm); \
  203. (elm)->field.le_prev = &(head)->lh_first; \
  204. } while (0)
  205. #define LIST_REMOVE(elm, field) do { \
  206. if ((elm)->field.le_next != NULL) \
  207. (elm)->field.le_next->field.le_prev = \
  208. (elm)->field.le_prev; \
  209. *(elm)->field.le_prev = (elm)->field.le_next; \
  210. _Q_INVALIDATE((elm)->field.le_prev); \
  211. _Q_INVALIDATE((elm)->field.le_next); \
  212. } while (0)
  213. #define LIST_REPLACE(elm, elm2, field) do { \
  214. if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \
  215. (elm2)->field.le_next->field.le_prev = \
  216. &(elm2)->field.le_next; \
  217. (elm2)->field.le_prev = (elm)->field.le_prev; \
  218. *(elm2)->field.le_prev = (elm2); \
  219. _Q_INVALIDATE((elm)->field.le_prev); \
  220. _Q_INVALIDATE((elm)->field.le_next); \
  221. } while (0)
  222. /*
  223. * Simple queue definitions.
  224. */
  225. #define SIMPLEQ_HEAD(name, type) \
  226. struct name { \
  227. struct type *sqh_first; /* first element */ \
  228. struct type **sqh_last; /* addr of last next element */ \
  229. }
  230. #define SIMPLEQ_HEAD_INITIALIZER(head) \
  231. { NULL, &(head).sqh_first }
  232. #define SIMPLEQ_ENTRY(type) \
  233. struct { \
  234. struct type *sqe_next; /* next element */ \
  235. }
  236. /*
  237. * Simple queue access methods.
  238. */
  239. #define SIMPLEQ_FIRST(head) ((head)->sqh_first)
  240. #define SIMPLEQ_END(head) NULL
  241. #define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
  242. #define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
  243. #define SIMPLEQ_FOREACH(var, head, field) \
  244. for((var) = SIMPLEQ_FIRST(head); \
  245. (var) != SIMPLEQ_END(head); \
  246. (var) = SIMPLEQ_NEXT(var, field))
  247. #define SIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \
  248. for ((var) = SIMPLEQ_FIRST(head); \
  249. (var) && ((tvar) = SIMPLEQ_NEXT(var, field), 1); \
  250. (var) = (tvar))
  251. /*
  252. * Simple queue functions.
  253. */
  254. #define SIMPLEQ_INIT(head) do { \
  255. (head)->sqh_first = NULL; \
  256. (head)->sqh_last = &(head)->sqh_first; \
  257. } while (0)
  258. #define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
  259. if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
  260. (head)->sqh_last = &(elm)->field.sqe_next; \
  261. (head)->sqh_first = (elm); \
  262. } while (0)
  263. #define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
  264. (elm)->field.sqe_next = NULL; \
  265. *(head)->sqh_last = (elm); \
  266. (head)->sqh_last = &(elm)->field.sqe_next; \
  267. } while (0)
  268. #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
  269. if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
  270. (head)->sqh_last = &(elm)->field.sqe_next; \
  271. (listelm)->field.sqe_next = (elm); \
  272. } while (0)
  273. #define SIMPLEQ_REMOVE_HEAD(head, field) do { \
  274. if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
  275. (head)->sqh_last = &(head)->sqh_first; \
  276. } while (0)
  277. #define SIMPLEQ_REMOVE_AFTER(head, elm, field) do { \
  278. if (((elm)->field.sqe_next = (elm)->field.sqe_next->field.sqe_next) \
  279. == NULL) \
  280. (head)->sqh_last = &(elm)->field.sqe_next; \
  281. } while (0)
  282. /*
  283. * XOR Simple queue definitions.
  284. */
  285. #define XSIMPLEQ_HEAD(name, type) \
  286. struct name { \
  287. struct type *sqx_first; /* first element */ \
  288. struct type **sqx_last; /* addr of last next element */ \
  289. unsigned long sqx_cookie; \
  290. }
  291. #define XSIMPLEQ_ENTRY(type) \
  292. struct { \
  293. struct type *sqx_next; /* next element */ \
  294. }
  295. /*
  296. * XOR Simple queue access methods.
  297. */
  298. #define XSIMPLEQ_XOR(head, ptr) ((__typeof(ptr))((head)->sqx_cookie ^ \
  299. (unsigned long)(ptr)))
  300. #define XSIMPLEQ_FIRST(head) XSIMPLEQ_XOR(head, ((head)->sqx_first))
  301. #define XSIMPLEQ_END(head) NULL
  302. #define XSIMPLEQ_EMPTY(head) (XSIMPLEQ_FIRST(head) == XSIMPLEQ_END(head))
  303. #define XSIMPLEQ_NEXT(head, elm, field) XSIMPLEQ_XOR(head, ((elm)->field.sqx_next))
  304. #define XSIMPLEQ_FOREACH(var, head, field) \
  305. for ((var) = XSIMPLEQ_FIRST(head); \
  306. (var) != XSIMPLEQ_END(head); \
  307. (var) = XSIMPLEQ_NEXT(head, var, field))
  308. #define XSIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \
  309. for ((var) = XSIMPLEQ_FIRST(head); \
  310. (var) && ((tvar) = XSIMPLEQ_NEXT(head, var, field), 1); \
  311. (var) = (tvar))
  312. /*
  313. * XOR Simple queue functions.
  314. */
  315. #define XSIMPLEQ_INIT(head) do { \
  316. arc4random_buf(&(head)->sqx_cookie, sizeof((head)->sqx_cookie)); \
  317. (head)->sqx_first = XSIMPLEQ_XOR(head, NULL); \
  318. (head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \
  319. } while (0)
  320. #define XSIMPLEQ_INSERT_HEAD(head, elm, field) do { \
  321. if (((elm)->field.sqx_next = (head)->sqx_first) == \
  322. XSIMPLEQ_XOR(head, NULL)) \
  323. (head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
  324. (head)->sqx_first = XSIMPLEQ_XOR(head, (elm)); \
  325. } while (0)
  326. #define XSIMPLEQ_INSERT_TAIL(head, elm, field) do { \
  327. (elm)->field.sqx_next = XSIMPLEQ_XOR(head, NULL); \
  328. *(XSIMPLEQ_XOR(head, (head)->sqx_last)) = XSIMPLEQ_XOR(head, (elm)); \
  329. (head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
  330. } while (0)
  331. #define XSIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
  332. if (((elm)->field.sqx_next = (listelm)->field.sqx_next) == \
  333. XSIMPLEQ_XOR(head, NULL)) \
  334. (head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
  335. (listelm)->field.sqx_next = XSIMPLEQ_XOR(head, (elm)); \
  336. } while (0)
  337. #define XSIMPLEQ_REMOVE_HEAD(head, field) do { \
  338. if (((head)->sqx_first = XSIMPLEQ_XOR(head, \
  339. (head)->sqx_first)->field.sqx_next) == XSIMPLEQ_XOR(head, NULL)) \
  340. (head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \
  341. } while (0)
  342. #define XSIMPLEQ_REMOVE_AFTER(head, elm, field) do { \
  343. if (((elm)->field.sqx_next = XSIMPLEQ_XOR(head, \
  344. (elm)->field.sqx_next)->field.sqx_next) \
  345. == XSIMPLEQ_XOR(head, NULL)) \
  346. (head)->sqx_last = \
  347. XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
  348. } while (0)
  349. /*
  350. * Tail queue definitions.
  351. */
  352. #define TAILQ_HEAD(name, type) \
  353. struct name { \
  354. struct type *tqh_first; /* first element */ \
  355. struct type **tqh_last; /* addr of last next element */ \
  356. }
  357. #define TAILQ_HEAD_INITIALIZER(head) \
  358. { NULL, &(head).tqh_first }
  359. #define TAILQ_ENTRY(type) \
  360. struct { \
  361. struct type *tqe_next; /* next element */ \
  362. struct type **tqe_prev; /* address of previous next element */ \
  363. }
  364. /*
  365. * tail queue access methods
  366. */
  367. #define TAILQ_FIRST(head) ((head)->tqh_first)
  368. #define TAILQ_END(head) NULL
  369. #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
  370. #define TAILQ_LAST(head, headname) \
  371. (*(((struct headname *)((head)->tqh_last))->tqh_last))
  372. /* XXX */
  373. #define TAILQ_PREV(elm, headname, field) \
  374. (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
  375. #define TAILQ_EMPTY(head) \
  376. (TAILQ_FIRST(head) == TAILQ_END(head))
  377. #define TAILQ_FOREACH(var, head, field) \
  378. for((var) = TAILQ_FIRST(head); \
  379. (var) != TAILQ_END(head); \
  380. (var) = TAILQ_NEXT(var, field))
  381. #define TAILQ_FOREACH_SAFE(var, head, field, tvar) \
  382. for ((var) = TAILQ_FIRST(head); \
  383. (var) != TAILQ_END(head) && \
  384. ((tvar) = TAILQ_NEXT(var, field), 1); \
  385. (var) = (tvar))
  386. #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
  387. for((var) = TAILQ_LAST(head, headname); \
  388. (var) != TAILQ_END(head); \
  389. (var) = TAILQ_PREV(var, headname, field))
  390. #define TAILQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar) \
  391. for ((var) = TAILQ_LAST(head, headname); \
  392. (var) != TAILQ_END(head) && \
  393. ((tvar) = TAILQ_PREV(var, headname, field), 1); \
  394. (var) = (tvar))
  395. /*
  396. * Tail queue functions.
  397. */
  398. #define TAILQ_INIT(head) do { \
  399. (head)->tqh_first = NULL; \
  400. (head)->tqh_last = &(head)->tqh_first; \
  401. } while (0)
  402. #define TAILQ_INSERT_HEAD(head, elm, field) do { \
  403. if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
  404. (head)->tqh_first->field.tqe_prev = \
  405. &(elm)->field.tqe_next; \
  406. else \
  407. (head)->tqh_last = &(elm)->field.tqe_next; \
  408. (head)->tqh_first = (elm); \
  409. (elm)->field.tqe_prev = &(head)->tqh_first; \
  410. } while (0)
  411. #define TAILQ_INSERT_TAIL(head, elm, field) do { \
  412. (elm)->field.tqe_next = NULL; \
  413. (elm)->field.tqe_prev = (head)->tqh_last; \
  414. *(head)->tqh_last = (elm); \
  415. (head)->tqh_last = &(elm)->field.tqe_next; \
  416. } while (0)
  417. #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
  418. if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
  419. (elm)->field.tqe_next->field.tqe_prev = \
  420. &(elm)->field.tqe_next; \
  421. else \
  422. (head)->tqh_last = &(elm)->field.tqe_next; \
  423. (listelm)->field.tqe_next = (elm); \
  424. (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
  425. } while (0)
  426. #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
  427. (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
  428. (elm)->field.tqe_next = (listelm); \
  429. *(listelm)->field.tqe_prev = (elm); \
  430. (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
  431. } while (0)
  432. #define TAILQ_REMOVE(head, elm, field) do { \
  433. if (((elm)->field.tqe_next) != NULL) \
  434. (elm)->field.tqe_next->field.tqe_prev = \
  435. (elm)->field.tqe_prev; \
  436. else \
  437. (head)->tqh_last = (elm)->field.tqe_prev; \
  438. *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
  439. _Q_INVALIDATE((elm)->field.tqe_prev); \
  440. _Q_INVALIDATE((elm)->field.tqe_next); \
  441. } while (0)
  442. #define TAILQ_REPLACE(head, elm, elm2, field) do { \
  443. if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \
  444. (elm2)->field.tqe_next->field.tqe_prev = \
  445. &(elm2)->field.tqe_next; \
  446. else \
  447. (head)->tqh_last = &(elm2)->field.tqe_next; \
  448. (elm2)->field.tqe_prev = (elm)->field.tqe_prev; \
  449. *(elm2)->field.tqe_prev = (elm2); \
  450. _Q_INVALIDATE((elm)->field.tqe_prev); \
  451. _Q_INVALIDATE((elm)->field.tqe_next); \
  452. } while (0)
  453. /*
  454. * Circular queue definitions.
  455. */
  456. #define CIRCLEQ_HEAD(name, type) \
  457. struct name { \
  458. struct type *cqh_first; /* first element */ \
  459. struct type *cqh_last; /* last element */ \
  460. }
  461. #define CIRCLEQ_HEAD_INITIALIZER(head) \
  462. { CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
  463. #define CIRCLEQ_ENTRY(type) \
  464. struct { \
  465. struct type *cqe_next; /* next element */ \
  466. struct type *cqe_prev; /* previous element */ \
  467. }
  468. /*
  469. * Circular queue access methods
  470. */
  471. #define CIRCLEQ_FIRST(head) ((head)->cqh_first)
  472. #define CIRCLEQ_LAST(head) ((head)->cqh_last)
  473. #define CIRCLEQ_END(head) ((void *)(head))
  474. #define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
  475. #define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
  476. #define CIRCLEQ_EMPTY(head) \
  477. (CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
  478. #define CIRCLEQ_FOREACH(var, head, field) \
  479. for((var) = CIRCLEQ_FIRST(head); \
  480. (var) != CIRCLEQ_END(head); \
  481. (var) = CIRCLEQ_NEXT(var, field))
  482. #define CIRCLEQ_FOREACH_SAFE(var, head, field, tvar) \
  483. for ((var) = CIRCLEQ_FIRST(head); \
  484. (var) != CIRCLEQ_END(head) && \
  485. ((tvar) = CIRCLEQ_NEXT(var, field), 1); \
  486. (var) = (tvar))
  487. #define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
  488. for((var) = CIRCLEQ_LAST(head); \
  489. (var) != CIRCLEQ_END(head); \
  490. (var) = CIRCLEQ_PREV(var, field))
  491. #define CIRCLEQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar) \
  492. for ((var) = CIRCLEQ_LAST(head, headname); \
  493. (var) != CIRCLEQ_END(head) && \
  494. ((tvar) = CIRCLEQ_PREV(var, headname, field), 1); \
  495. (var) = (tvar))
  496. /*
  497. * Circular queue functions.
  498. */
  499. #define CIRCLEQ_INIT(head) do { \
  500. (head)->cqh_first = CIRCLEQ_END(head); \
  501. (head)->cqh_last = CIRCLEQ_END(head); \
  502. } while (0)
  503. #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
  504. (elm)->field.cqe_next = (listelm)->field.cqe_next; \
  505. (elm)->field.cqe_prev = (listelm); \
  506. if ((listelm)->field.cqe_next == CIRCLEQ_END(head)) \
  507. (head)->cqh_last = (elm); \
  508. else \
  509. (listelm)->field.cqe_next->field.cqe_prev = (elm); \
  510. (listelm)->field.cqe_next = (elm); \
  511. } while (0)
  512. #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
  513. (elm)->field.cqe_next = (listelm); \
  514. (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
  515. if ((listelm)->field.cqe_prev == CIRCLEQ_END(head)) \
  516. (head)->cqh_first = (elm); \
  517. else \
  518. (listelm)->field.cqe_prev->field.cqe_next = (elm); \
  519. (listelm)->field.cqe_prev = (elm); \
  520. } while (0)
  521. #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
  522. (elm)->field.cqe_next = (head)->cqh_first; \
  523. (elm)->field.cqe_prev = CIRCLEQ_END(head); \
  524. if ((head)->cqh_last == CIRCLEQ_END(head)) \
  525. (head)->cqh_last = (elm); \
  526. else \
  527. (head)->cqh_first->field.cqe_prev = (elm); \
  528. (head)->cqh_first = (elm); \
  529. } while (0)
  530. #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
  531. (elm)->field.cqe_next = CIRCLEQ_END(head); \
  532. (elm)->field.cqe_prev = (head)->cqh_last; \
  533. if ((head)->cqh_first == CIRCLEQ_END(head)) \
  534. (head)->cqh_first = (elm); \
  535. else \
  536. (head)->cqh_last->field.cqe_next = (elm); \
  537. (head)->cqh_last = (elm); \
  538. } while (0)
  539. #define CIRCLEQ_REMOVE(head, elm, field) do { \
  540. if ((elm)->field.cqe_next == CIRCLEQ_END(head)) \
  541. (head)->cqh_last = (elm)->field.cqe_prev; \
  542. else \
  543. (elm)->field.cqe_next->field.cqe_prev = \
  544. (elm)->field.cqe_prev; \
  545. if ((elm)->field.cqe_prev == CIRCLEQ_END(head)) \
  546. (head)->cqh_first = (elm)->field.cqe_next; \
  547. else \
  548. (elm)->field.cqe_prev->field.cqe_next = \
  549. (elm)->field.cqe_next; \
  550. _Q_INVALIDATE((elm)->field.cqe_prev); \
  551. _Q_INVALIDATE((elm)->field.cqe_next); \
  552. } while (0)
  553. #define CIRCLEQ_REPLACE(head, elm, elm2, field) do { \
  554. if (((elm2)->field.cqe_next = (elm)->field.cqe_next) == \
  555. CIRCLEQ_END(head)) \
  556. (head)->cqh_last = (elm2); \
  557. else \
  558. (elm2)->field.cqe_next->field.cqe_prev = (elm2); \
  559. if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) == \
  560. CIRCLEQ_END(head)) \
  561. (head)->cqh_first = (elm2); \
  562. else \
  563. (elm2)->field.cqe_prev->field.cqe_next = (elm2); \
  564. _Q_INVALIDATE((elm)->field.cqe_prev); \
  565. _Q_INVALIDATE((elm)->field.cqe_next); \
  566. } while (0)
  567. #endif /* !_SYS_QUEUE_H_ */