|
@@ -0,0 +1,40 @@
|
|
|
+#!/usr/bin/env python3
|
|
|
+# -*- coding: utf-8 -*-
|
|
|
+"""
|
|
|
+Created on Mon Oct 5 09:50:24 2020
|
|
|
+
|
|
|
+@author: tanya
|
|
|
+"""
|
|
|
+
|
|
|
+from sklearn.ensemble import RandomForestClassifier
|
|
|
+from sklearn.feature_selection import SelectPercentile
|
|
|
+from sklearn.linear_model import LogisticRegression
|
|
|
+from sklearn.decomposition import PCA
|
|
|
+from sklearn.pipeline import Pipeline
|
|
|
+from sklearn.preprocessing import StandardScaler
|
|
|
+from hyperopt import hp
|
|
|
+import numpy as np
|
|
|
+
|
|
|
+
|
|
|
+space = hp.choice("pipelines", [
|
|
|
+
|
|
|
+ {"name": "std_scaler_kbest_rf",
|
|
|
+ "pipeline": Pipeline([
|
|
|
+ ("std_scaler", StandardScaler()),
|
|
|
+ ("kbest", SelectPercentile()),
|
|
|
+ ("rf", RandomForestClassifier())]),
|
|
|
+ "params": {"kbest__percentile":
|
|
|
+ hp.choice('kbest__percentile', range(1, 3)),
|
|
|
+ "rf__n_estimators":
|
|
|
+ 50 + hp.randint('rf__n_estimators', 50)}},
|
|
|
+
|
|
|
+ {"name": "std_scaler_pca_lr",
|
|
|
+ "pipeline": Pipeline([
|
|
|
+ ("std_scaler", StandardScaler()),
|
|
|
+ ("pca", PCA()),
|
|
|
+ ("lr", LogisticRegression())]),
|
|
|
+ "params": {"lr__C":
|
|
|
+ hp.loguniform("lr__C", np.log(0.01), np.log(0.1)),
|
|
|
+ "pca__n_components":
|
|
|
+ 1 + hp.randint("pca__n_components", 4)}}
|
|
|
+ ])
|