|
@@ -60,24 +60,6 @@ from sklearn.model_selection import StratifiedKFold
|
|
from cdplib.log import Log
|
|
from cdplib.log import Log
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-aa = make_sliding_window_cv(data_set_size=50,
|
|
|
|
- test_proportion=0.1,
|
|
|
|
- train_proportion=0.6,
|
|
|
|
- step_proportion=0.1)
|
|
|
|
-
|
|
|
|
-aa = list(aa)
|
|
|
|
-
|
|
|
|
-aa = make_sliding_window_cv(test_proportion=0.1,
|
|
|
|
- train_proportion=0.6,
|
|
|
|
- step_proportion=0.05,
|
|
|
|
- index=pd.date_range(start=pd.to_datetime("2020-01-01"), periods=50))
|
|
|
|
-
|
|
|
|
-aa = list(aa)
|
|
|
|
-
|
|
|
|
-
|
|
|
|
# TODO: write with yield !!!!
|
|
# TODO: write with yield !!!!
|
|
|
|
|
|
def make_nested_expanding_cv(
|
|
def make_nested_expanding_cv(
|
|
@@ -126,31 +108,6 @@ def make_nested_expanding_cv(
|
|
"Exit with error: {}".format(e)))
|
|
"Exit with error: {}".format(e)))
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-for train_inds, test_inds in aa:
|
|
|
|
- print(len(test_inds)/(len(train_inds) + len(test_inds)))
|
|
|
|
- print(len(test_inds)/50)
|
|
|
|
-
|
|
|
|
-aaa = list(aaa)
|
|
|
|
-
|
|
|
|
-for aaa_cv in aaa:
|
|
|
|
- for train_inds, test_inds in aaa_cv:
|
|
|
|
- print(len(test_inds)/(len(train_inds) + len(test_inds)))
|
|
|
|
- print(len(test_inds)/50)
|
|
|
|
-
|
|
|
|
-aaa = make_nested_expanding_cv(#data_set_size=50,
|
|
|
|
- test_proportion=0.1,
|
|
|
|
- start_train_proportion=0.6,
|
|
|
|
- step_proportion=0.1,
|
|
|
|
- index=pd.date_range(start=pd.to_datetime("2020-01-01"), periods=50))
|
|
|
|
-
|
|
|
|
-aaa = list(aaa)
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
def cv_slice_dataset(X, y, train_inds, test_inds)\
|
|
def cv_slice_dataset(X, y, train_inds, test_inds)\
|
|
-> Tuple[Union[pd.DataFrame, np.ndarray],
|
|
-> Tuple[Union[pd.DataFrame, np.ndarray],
|
|
Union[pd.Series, np.ndarray]]:
|
|
Union[pd.Series, np.ndarray]]:
|