|
@@ -97,104 +97,111 @@ class PipelineSelector(ABC):
|
|
|
|
|
|
:param str stdout_log_level: can be INFO, WARNING, ERROR
|
|
|
"""
|
|
|
- self._logger = Log("PipelineSelector: ",
|
|
|
- stdout_log_level=stdout_log_level)
|
|
|
-
|
|
|
- input_errors = [(cost_func, Callable,
|
|
|
- "Parameter 'cost_func' must be a Callable"),
|
|
|
- (greater_is_better, bool,
|
|
|
- "Parameter 'greater_is_better' must be bool type"),
|
|
|
- (trials_path, str,
|
|
|
- "Parameter 'trials_path' must be of string type"),
|
|
|
- (cross_val_averaging_func, (Callable, None.__class__),
|
|
|
- ("Parameter 'cross_val_averaging_func'"
|
|
|
- "must be a Callable")),
|
|
|
- (backup_trials_freq, (int, None.__class__),
|
|
|
- "Parameter backup_trials_freq must be an int"),
|
|
|
- (additional_metrics, (dict, None.__class__),
|
|
|
- "Parameter additional_metrics must be a dict"),
|
|
|
- (strategy_name, (str, None.__class__),
|
|
|
- "Parameter strategy_name must be a str"),
|
|
|
- (stdout_log_level, str,
|
|
|
- "Parameter stdout_log_level must be a str")]
|
|
|
-
|
|
|
- for p, t, err in input_errors:
|
|
|
- try:
|
|
|
- assert(isinstance(p, t))
|
|
|
- except AssertionError:
|
|
|
- self._logger.log_and_raise_error(err, ErrorType=NameError)
|
|
|
-
|
|
|
try:
|
|
|
+
|
|
|
+ self._logger = Log("PipelineSelector: ",
|
|
|
+ stdout_log_level=stdout_log_level)
|
|
|
+
|
|
|
+ input_errors = [
|
|
|
+ (cost_func, Callable,
|
|
|
+ "Parameter 'cost_func' must be a Callable"),
|
|
|
+ (greater_is_better, bool,
|
|
|
+ "Parameter 'greater_is_better' must be bool type"),
|
|
|
+ (trials_path, str,
|
|
|
+ "Parameter 'trials_path' must be of string type"),
|
|
|
+ (cross_val_averaging_func, (Callable, None.__class__),
|
|
|
+ ("Parameter 'cross_val_averaging_func'"
|
|
|
+ "must be a Callable")),
|
|
|
+ (backup_trials_freq, (int, None.__class__),
|
|
|
+ "Parameter backup_trials_freq must be an int"),
|
|
|
+ (additional_metrics, (dict, None.__class__),
|
|
|
+ "Parameter additional_metrics must be a dict"),
|
|
|
+ (strategy_name, (str, None.__class__),
|
|
|
+ "Parameter strategy_name must be a str"),
|
|
|
+ (stdout_log_level, str,
|
|
|
+ "Parameter stdout_log_level must be a str")]
|
|
|
+
|
|
|
+ for p, t, err in input_errors:
|
|
|
+ assert((isinstance(p, t))), err
|
|
|
+
|
|
|
assert((additional_metrics is None) or
|
|
|
all([isinstance(metric, Callable)
|
|
|
- for metric in additional_metrics.values()]))
|
|
|
- except AssertionError:
|
|
|
- err = "Metrics in additional_metrics must be Callables"
|
|
|
- self._logger.log_and_raise_error(err, ErrorType=NameError)
|
|
|
-
|
|
|
- ExceptionsHandler(self._logger).assert_is_directory(path=trials_path)
|
|
|
-
|
|
|
- self.attached_space = False
|
|
|
- self.attached_data = False
|
|
|
- self.configured_cross_validation = False
|
|
|
- self.configured_summary_saving = False
|
|
|
-
|
|
|
- self._cost_func = cost_func
|
|
|
- # score factor is 1 when cost_func is minimized,
|
|
|
- # -1 when cost func is maximized
|
|
|
- self._score_factor = (not greater_is_better) - greater_is_better
|
|
|
- self.trials_path = trials_path
|
|
|
- self._backup_trials_freq = backup_trials_freq
|
|
|
- self._cross_val_averaging_func = cross_val_averaging_func or np.mean
|
|
|
- self._additional_metrics = additional_metrics or {}
|
|
|
- self._strategy_name = strategy_name
|
|
|
- self._data_path = None
|
|
|
- self._cv_path = None
|
|
|
-
|
|
|
- # best_score can be also read from trials
|
|
|
- # but is kept explicitely in order not to
|
|
|
- # search through the trials object every time
|
|
|
- # loss is the opposite of score
|
|
|
- self.best_score = np.nan
|
|
|
-
|
|
|
- self._cross_validation = sklearn_cross_validation
|
|
|
-
|
|
|
- # if a trials object already exists at the given path,
|
|
|
- # it is loaded and the search is continued. Else,
|
|
|
- # the search is started from the beginning.
|
|
|
- if os.path.isfile(self.trials_path):
|
|
|
- try:
|
|
|
- with open(self.trials_path, "rb") as f:
|
|
|
- self._trials = pickle.load(f)
|
|
|
-
|
|
|
- self._start_iteration = self.number_of_trials
|
|
|
-
|
|
|
- self.best_score = self.best_trial_score
|
|
|
-
|
|
|
- self._logger.info(("Loaded an existing trials object"
|
|
|
- "Consisting of {} trials")
|
|
|
- .format(self._start_iteration))
|
|
|
-
|
|
|
- except Exception as e:
|
|
|
- err = ("Trials object could not be loaded. "
|
|
|
- "Exit with error {}").format(e)
|
|
|
- self._logger.log_and_raise_error(err)
|
|
|
+ for metric in additional_metrics.values()])),\
|
|
|
+ "Metrics in additional_metrics must be Callables"
|
|
|
+
|
|
|
+ ExceptionsHandler(self._logger)\
|
|
|
+ .assert_is_directory(path=trials_path)
|
|
|
+
|
|
|
+ self.attached_space = False
|
|
|
+ self.attached_data = False
|
|
|
+ self.configured_cross_validation = False
|
|
|
+ self.configured_summary_saving = False
|
|
|
+
|
|
|
+ self._cost_func = cost_func
|
|
|
+ # score factor is 1 when cost_func is minimized,
|
|
|
+ # -1 when cost func is maximized
|
|
|
+ self._score_factor = (not greater_is_better) - greater_is_better
|
|
|
+ self.trials_path = trials_path
|
|
|
+ self._backup_trials_freq = backup_trials_freq
|
|
|
+ self._cross_val_averaging_func = cross_val_averaging_func\
|
|
|
+ or np.mean
|
|
|
+ self._additional_metrics = additional_metrics or {}
|
|
|
+ self._strategy_name = strategy_name
|
|
|
+ self._data_path = None
|
|
|
+ self._cv_path = None
|
|
|
+
|
|
|
+ # best_score can be also read from trials
|
|
|
+ # but is kept explicitely in order not to
|
|
|
+ # search through the trials object every time
|
|
|
+ # loss is the opposite of score
|
|
|
+ self.best_score = np.nan
|
|
|
+
|
|
|
+ # if cross-valition is not configured,
|
|
|
+ # sklearn cross-validation method is taken by default
|
|
|
+ self._cross_validation = sklearn_cross_validation
|
|
|
+
|
|
|
+ # if a trials object already exists at the given path,
|
|
|
+ # it is loaded and the search is continued. Else,
|
|
|
+ # the search is started from the beginning.
|
|
|
+ if os.path.isfile(self.trials_path):
|
|
|
+ try:
|
|
|
+ with open(self.trials_path, "rb") as f:
|
|
|
+ self._trials = pickle.load(f)
|
|
|
+
|
|
|
+ self._start_iteration = self.number_of_trials
|
|
|
+
|
|
|
+ self.best_score = self.best_trial_score
|
|
|
+
|
|
|
+ self._logger.info(("Loaded an existing trials object"
|
|
|
+ "Consisting of {} trials")
|
|
|
+ .format(self._start_iteration))
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ err = ("Trials object could not be loaded. "
|
|
|
+ "Exit with error {}").format(e)
|
|
|
+ self._logger.log_and_raise_error(err)
|
|
|
+ self._trials = None
|
|
|
+
|
|
|
+ else:
|
|
|
+ self._logger.warning(("No existing trials object was found, "
|
|
|
+ "Starting from scratch."))
|
|
|
+
|
|
|
self._trials = None
|
|
|
+ self._start_iteration = 0
|
|
|
|
|
|
- else:
|
|
|
- self._logger.warning(("No existing trials object was found, "
|
|
|
- "Starting from scratch."))
|
|
|
+ # keeping track of the current search iteration
|
|
|
+ self._iteration = self._start_iteration
|
|
|
+ self._score_improved = False
|
|
|
|
|
|
- self._trials = None
|
|
|
- self._start_iteration = 0
|
|
|
+ self.start_tuning_time = datetime.datetime.today()
|
|
|
+ self.total_tuning_time = None
|
|
|
+ self.finished_tuning = False
|
|
|
|
|
|
- # keeping track of the current search iteration
|
|
|
- self._iteration = self._start_iteration
|
|
|
- self._score_improved = False
|
|
|
+ except Exception as e:
|
|
|
+ err = ("Failed to initialize the class. "
|
|
|
+ "Exit with error: {}".format(e))
|
|
|
|
|
|
- self.start_tuning_time = datetime.datetime.today()
|
|
|
- self.total_tuning_time = None
|
|
|
- self.finished_tuning = False
|
|
|
+ self._logger.log_and_raise_error(err)
|
|
|
|
|
|
def _backup_trials(self):
|
|
|
'''
|
|
@@ -204,6 +211,7 @@ class PipelineSelector(ABC):
|
|
|
try:
|
|
|
with open(self.trials_path, "wb") as f:
|
|
|
pickle.dump(self._trials, f)
|
|
|
+
|
|
|
except Exception as e:
|
|
|
err = "Could not backup trials. Exit with error: {}".format(e)
|
|
|
self._logger.log_and_raise_error(err)
|
|
@@ -217,19 +225,14 @@ class PipelineSelector(ABC):
|
|
|
signature as sklearn.model_selection.cross_validate
|
|
|
"""
|
|
|
try:
|
|
|
- assert(isinstance(cross_validation, Callable))
|
|
|
- except AssertionError:
|
|
|
- err = "Parameter cross_validation must be a function"
|
|
|
- self._logger.log_and_raise_error(err, ErrorType=NameError)
|
|
|
+ assert(isinstance(cross_validation, Callable)),\
|
|
|
+ "Parameter cross_validation must be a function"
|
|
|
|
|
|
- try:
|
|
|
kwargs = kwargs or {}
|
|
|
- assert(isinstance(kwargs, dict))
|
|
|
- except AssertionError:
|
|
|
- err = "Paramter kwargs must be a dict"
|
|
|
- self._logger.log_and_raise_error(err, ErrorType=NameError)
|
|
|
|
|
|
- try:
|
|
|
+ assert(isinstance(kwargs, dict)),\
|
|
|
+ "Paramter kwargs must be a dict"
|
|
|
+
|
|
|
self._cross_validation = functools.partial(
|
|
|
self._cross_validation, **kwargs)
|
|
|
|
|
@@ -244,6 +247,7 @@ class PipelineSelector(ABC):
|
|
|
except Exception as e:
|
|
|
err = ("Failed to configure cross-validation. "
|
|
|
"Exit with error: {}".format(e))
|
|
|
+
|
|
|
self._logger.log_and_raise_error(err)
|
|
|
|
|
|
def configure_cross_validation_from_module(self,
|
|
@@ -258,12 +262,9 @@ class PipelineSelector(ABC):
|
|
|
"""
|
|
|
try:
|
|
|
assert(isinstance(module_path, str) and
|
|
|
- isinstance(name, str))
|
|
|
- except AssertionError:
|
|
|
- err = "Parameters module_path and name must be of str type"
|
|
|
- self._logger.log_and_raise_error(err, ErrorType=NameError)
|
|
|
+ isinstance(name, str)),\
|
|
|
+ "Parameters module_path and name must be of str type"
|
|
|
|
|
|
- try:
|
|
|
self._cross_validation = \
|
|
|
LoadingUtils().load_from_module(
|
|
|
module_path=module_path, name=name)
|
|
@@ -277,7 +278,8 @@ class PipelineSelector(ABC):
|
|
|
except Exception as e:
|
|
|
err = ("Failed to load cross-validation from module. "
|
|
|
"Exit with error: {}".format(e))
|
|
|
- self._logger.log_and_raise_error(e)
|
|
|
+
|
|
|
+ self._logger.log_and_raise_error(err)
|
|
|
|
|
|
def attach_space(self, space):
|
|
|
"""
|
|
@@ -287,9 +289,16 @@ class PipelineSelector(ABC):
|
|
|
the elements of which are dictionaries with keys:
|
|
|
name, pipeline, params
|
|
|
"""
|
|
|
- self._space = space
|
|
|
- self._logger.info("Attached parameter distribution space")
|
|
|
- self.attached_space = True
|
|
|
+ try:
|
|
|
+ self._space = space
|
|
|
+ self._logger.info("Attached parameter distribution space")
|
|
|
+ self.attached_space = True
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ err = ("Failed to attach space. "
|
|
|
+ "Exit with error: {}".format(e))
|
|
|
+
|
|
|
+ self._logger.log_and_raise_error(err)
|
|
|
|
|
|
def attach_space_from_module(self, module_path: str, name: str):
|
|
|
"""
|
|
@@ -301,21 +310,20 @@ class PipelineSelector(ABC):
|
|
|
"""
|
|
|
try:
|
|
|
assert(isinstance(module_path, str) and
|
|
|
- isinstance(name, str))
|
|
|
- except AssertionError:
|
|
|
- err = "Parameters module_path and name must be of str type"
|
|
|
- self._logger.log_and_raise_error(err, ErrorType=NameError)
|
|
|
+ isinstance(name, str)),\
|
|
|
+ "Parameters module_path and name must be of str type"
|
|
|
|
|
|
- try:
|
|
|
self._space = LoadingUtils().load_from_module(
|
|
|
module_path=module_path, name=name)
|
|
|
|
|
|
self._logger.info("Attached parameter distribution space")
|
|
|
|
|
|
self.attached_space = True
|
|
|
+
|
|
|
except Exception as e:
|
|
|
err = ("Failed to attach space from module. "
|
|
|
"Exit with error {}".format(e))
|
|
|
+
|
|
|
self._logger.loger_and_raise_error(err)
|
|
|
|
|
|
def attach_data(self, X_train: (pd.DataFrame, np.ndarray),
|
|
@@ -342,22 +350,19 @@ class PipelineSelector(ABC):
|
|
|
during cross-validation
|
|
|
example: [([0,1,2], [3,4]), ([1,2,3], [4,5])]
|
|
|
'''
|
|
|
- NoneType = None.__class__
|
|
|
+ try:
|
|
|
+ NoneType = None.__class__
|
|
|
|
|
|
- input_err = "Non-valid combination of train and val data types"
|
|
|
+ input_err = "Non-valid combination of train and val data types"
|
|
|
|
|
|
- if cv is None:
|
|
|
- try:
|
|
|
+ if cv is None:
|
|
|
assert(isinstance(X_train, (pd.DataFrame, np.ndarray)) and
|
|
|
isinstance(X_val, (pd.DataFrame, np.ndarray)) and
|
|
|
isinstance(y_train, (pd.Series, np.ndarray,
|
|
|
pd.DataFrame, NoneType)) and
|
|
|
isinstance(y_val, (pd.Series, np.ndarray)) and
|
|
|
- (y_val is None) == (y_train is None))
|
|
|
- except AssertionError:
|
|
|
- self._logger.log_and_raise_error(input_err)
|
|
|
+ (y_val is None) == (y_train is None)), input_err
|
|
|
|
|
|
- try:
|
|
|
# cost is evaluated with a cross validation function
|
|
|
# that accepts an array and a cv object with
|
|
|
# indices of the fold splits.
|
|
@@ -373,25 +378,24 @@ class PipelineSelector(ABC):
|
|
|
self._y = None if y_train is None\
|
|
|
else np.concatenate([y_train, y_val])
|
|
|
|
|
|
- except Exception as e:
|
|
|
- err = "Failed to attach data. Exit with error: {}".format(e)
|
|
|
- self._logger.log_and_raise_error(err)
|
|
|
-
|
|
|
- else:
|
|
|
- try:
|
|
|
+ else:
|
|
|
assert(isinstance(X_train, (pd.DataFrame, np.ndarray)) and
|
|
|
isinstance(y_train, (pd.Series, np.ndarray,
|
|
|
pd.DataFrame, NoneType)) and
|
|
|
- (X_val is None) and (y_val is None))
|
|
|
- except AssertionError:
|
|
|
- self._logger.log_and_raise_error(input_err)
|
|
|
+ (X_val is None) and (y_val is None)), input_err
|
|
|
+
|
|
|
+ self._cv = cv
|
|
|
+ self._X = X_train
|
|
|
+ self._y = y_train
|
|
|
+
|
|
|
+ self._logger.info("Attached data")
|
|
|
+ self.attached_data = True
|
|
|
|
|
|
- self._cv = cv
|
|
|
- self._X = X_train
|
|
|
- self._y = y_train
|
|
|
+ except Exception as e:
|
|
|
+ err = ("Failed to attach data. "
|
|
|
+ "Exit with error: {}".format(e))
|
|
|
|
|
|
- self._logger.info("Attached data")
|
|
|
- self.attached_data = True
|
|
|
+ self._logger.log_and_raise_error(err)
|
|
|
|
|
|
def attach_data_from_hdf5(self,
|
|
|
data_hdf5_store_path: str,
|
|
@@ -412,48 +416,38 @@ class PipelineSelector(ABC):
|
|
|
the cv data
|
|
|
"""
|
|
|
try:
|
|
|
- assert(os.path.isfile(data_hdf5_store_path))
|
|
|
- except AssertionError:
|
|
|
- err = "Parameter hdf5_store_path is not a file"
|
|
|
- self._logger.log_and_raise_error(err, ErrorType=NameError)
|
|
|
+ assert(os.path.isfile(data_hdf5_store_path)),\
|
|
|
+ "Parameter hdf5_store_path is not a file"
|
|
|
|
|
|
- # load the hdf5 store
|
|
|
- try:
|
|
|
store = pd.HDFStore(data_hdf5_store_path)
|
|
|
+
|
|
|
self._data_path = data_hdf5_store_path
|
|
|
- except Exception as e:
|
|
|
- err = "Could not load the hdf5 store. Exit with error: {}."\
|
|
|
- .format(e)
|
|
|
- self._logger.log_and_raise_error(err)
|
|
|
|
|
|
- data_input = {}
|
|
|
+ data_input = {}
|
|
|
|
|
|
- for key in ["/X_train", "/y_train", "/X_val", "/y_val"]:
|
|
|
- if key not in store.keys():
|
|
|
- data_input[key.replace("/", "")] = None
|
|
|
- else:
|
|
|
- data_input[key.replace("/", "")] = store[key]
|
|
|
+ for key in ["/X_train", "/y_train", "/X_val", "/y_val"]:
|
|
|
+ if key not in store.keys():
|
|
|
+ data_input[key.replace("/", "")] = None
|
|
|
+ else:
|
|
|
+ data_input[key.replace("/", "")] = store[key]
|
|
|
|
|
|
- if cv_pickle_path is not None:
|
|
|
- try:
|
|
|
- assert(os.path.isfile(cv_pickle_path))
|
|
|
- except AssertionError:
|
|
|
- err = "Parameter hdf5_store_path is not a file"
|
|
|
- self._logger.log_and_raise_error(err, ErrorType=NameError)
|
|
|
+ if cv_pickle_path is not None:
|
|
|
+ assert(os.path.isfile(cv_pickle_path)),\
|
|
|
+ "Parameter cv_pickle_path is not a file"
|
|
|
|
|
|
- try:
|
|
|
data_input["cv"] = pickle.load(open(cv_pickle_path, "rb"))
|
|
|
self._cv_path = cv_pickle_path
|
|
|
- except Exception as e:
|
|
|
- err = "Could not load the pickeled cv. Exit with error: {}."\
|
|
|
- .format(e)
|
|
|
- self._logger.log_and_raise_error(err)
|
|
|
- else:
|
|
|
- data_input["cv"] = None
|
|
|
|
|
|
- self.attach_data(**data_input)
|
|
|
+ else:
|
|
|
+ data_input["cv"] = None
|
|
|
+
|
|
|
+ self.attach_data(**data_input)
|
|
|
|
|
|
- store.close()
|
|
|
+ store.close()
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ err = "Failed to attach data. Exit with error: {}".format(e)
|
|
|
+ self._logger.log_and_raise_error(err)
|
|
|
|
|
|
def configer_summary_saving(self,
|
|
|
save_method: Callable = None,
|
|
@@ -506,12 +500,9 @@ class PipelineSelector(ABC):
|
|
|
"""
|
|
|
"""
|
|
|
try:
|
|
|
- assert(self.configured_summary_saving)
|
|
|
- except AssertionError:
|
|
|
- err = "Result saving must be configured first"
|
|
|
- self._logger.log_and_raise_error(err, ErrorType=AssertionError)
|
|
|
+ assert(self.configured_summary_saving),\
|
|
|
+ "Result saving must be configured first"
|
|
|
|
|
|
- try:
|
|
|
self._save_method(summary)
|
|
|
|
|
|
except Exception as e:
|
|
@@ -608,59 +599,54 @@ class PipelineSelector(ABC):
|
|
|
'''
|
|
|
try:
|
|
|
assert(isinstance(space_element, dict) and
|
|
|
- set(['name', 'pipeline', 'params']) <= space_element.keys())
|
|
|
+ set(['name', 'pipeline', 'params'])
|
|
|
+ <= space_element.keys()),\
|
|
|
+ "Space elements are of wrong form"
|
|
|
|
|
|
assert(isinstance(space_element['name'], str) and
|
|
|
isinstance(space_element['pipeline'], Pipeline) and
|
|
|
- isinstance(space_element['params'], dict))
|
|
|
+ isinstance(space_element['params'], dict)),\
|
|
|
+ "Space elements are of wrong form"
|
|
|
|
|
|
- except AssertionError:
|
|
|
- err = "Space elements are of wrong form"
|
|
|
- self._logger.log_and_raise_error(err)
|
|
|
-
|
|
|
- start_time = time.time()
|
|
|
+ start_time = time.time()
|
|
|
|
|
|
- try:
|
|
|
- assert(self.attached_data)
|
|
|
- except AssertionError:
|
|
|
- err = ("Data must be attached in order "
|
|
|
- "in order to effectuate the best"
|
|
|
- "pipeline search")
|
|
|
- self._logger.log_and_raise_error(err)
|
|
|
+ assert(self.attached_data),\
|
|
|
+ ("Data must be attached in order "
|
|
|
+ "in order to effectuate the best"
|
|
|
+ "pipeline search")
|
|
|
|
|
|
- summary = {}
|
|
|
+ summary = {}
|
|
|
|
|
|
- if self._strategy_name is not None:
|
|
|
- summary["strategy_name"] = self._strategy_name
|
|
|
+ if self._strategy_name is not None:
|
|
|
+ summary["strategy_name"] = self._strategy_name
|
|
|
|
|
|
- if isinstance(self._cost_func, str):
|
|
|
- summary["cost_func"] = self._cost_func
|
|
|
+ if isinstance(self._cost_func, str):
|
|
|
+ summary["cost_func"] = self._cost_func
|
|
|
|
|
|
- elif hasattr(self._cost_func, "__name__"):
|
|
|
- summary["cost_func"] = self._cost_func.__name__
|
|
|
+ elif hasattr(self._cost_func, "__name__"):
|
|
|
+ summary["cost_func"] = self._cost_func.__name__
|
|
|
|
|
|
- summary["trials_path"] = self.trials_path
|
|
|
+ summary["trials_path"] = self.trials_path
|
|
|
|
|
|
- if self._data_path is not None:
|
|
|
- summary["data_path"] = self._data_path
|
|
|
+ if self._data_path is not None:
|
|
|
+ summary["data_path"] = self._data_path
|
|
|
|
|
|
- if self._cv_path is not None:
|
|
|
- summary["cv_path"] = self._cv_path
|
|
|
+ if self._cv_path is not None:
|
|
|
+ summary["cv_path"] = self._cv_path
|
|
|
|
|
|
- summary["start_tuning_time"] = self.start_tuning_time
|
|
|
+ summary["start_tuning_time"] = self.start_tuning_time
|
|
|
|
|
|
- summary["iteration"] = self._iteration
|
|
|
+ summary["iteration"] = self._iteration
|
|
|
|
|
|
- backup_cond = (self._backup_trials_freq is not None) and\
|
|
|
- ((self._iteration - self._start_iteration - 1) %
|
|
|
- self._backup_trials_freq == 0) or\
|
|
|
- self._score_improved
|
|
|
+ backup_cond = (self._backup_trials_freq is not None) and\
|
|
|
+ ((self._iteration - self._start_iteration - 1) %
|
|
|
+ self._backup_trials_freq == 0) or\
|
|
|
+ self._score_improved
|
|
|
|
|
|
- if backup_cond:
|
|
|
- self._backup_trials()
|
|
|
- self._score_improved = False
|
|
|
+ if backup_cond:
|
|
|
+ self._backup_trials()
|
|
|
+ self._score_improved = False
|
|
|
|
|
|
- try:
|
|
|
pipeline = space_element['pipeline']
|
|
|
params = space_element['params']
|
|
|
pipeline.set_params(**params)
|