|
@@ -1,796 +0,0 @@
|
|
|
-#!/usr/bin/env python3
|
|
|
-# -*- coding: utf-8 -*-
|
|
|
-"""
|
|
|
-Created on Fri Nov 9 13:27:44 2018
|
|
|
-
|
|
|
-@author: tanja
|
|
|
-@description: Implementation of machine learning
|
|
|
- pipeline selection and tuning with hyperopt library
|
|
|
-"""
|
|
|
-
|
|
|
-import os
|
|
|
-import sys
|
|
|
-import gc
|
|
|
-import logging
|
|
|
-import pickle
|
|
|
-import time
|
|
|
-import datetime
|
|
|
-
|
|
|
-import pandas as pd
|
|
|
-import numpy as np
|
|
|
-
|
|
|
-from sklearn.pipeline import Pipeline
|
|
|
-
|
|
|
-from hyperopt import fmin, tpe, rand, Trials, hp, STATUS_OK, STATUS_FAIL,\
|
|
|
- space_eval, pyll
|
|
|
-
|
|
|
-from sklearn.model_selection import cross_validate
|
|
|
-
|
|
|
-
|
|
|
-class HyperoptPipelineSelection:
|
|
|
- '''
|
|
|
- Use this class to perform a search
|
|
|
- for a machine learning pipeline in a given parameter space.
|
|
|
- The parameter space can include multiple types of Pipelines
|
|
|
- (SVM, XGBOOST, random forest, etc),
|
|
|
- as well as parameter distributions for each pipeline parameter.
|
|
|
- See example in main for the expected space structure.
|
|
|
-
|
|
|
- The search can be performed either randomly
|
|
|
- or with a tree-based algorithm. (Other methods are currently
|
|
|
- developped by hyperopt creators).
|
|
|
-
|
|
|
- Attribute trials is responsible for book-keeping parameter
|
|
|
- combinations that have already been tried out. This attribute
|
|
|
- is saved to a binary file every n minutes as well as every time
|
|
|
- a better pipeline was found.
|
|
|
- '''
|
|
|
- def __init__(self,
|
|
|
- cost_func,
|
|
|
- greater_is_better: bool,
|
|
|
- trials_path: str,
|
|
|
- backup_trials_freq: int = 1,
|
|
|
- log_path: str = None,
|
|
|
- averaging_func: callable = None):
|
|
|
- '''
|
|
|
- :param callable cost_func: function to minimize or maximize
|
|
|
-
|
|
|
- :param bool greater_is_better: when True
|
|
|
- cost_func is maximized, else minimized.
|
|
|
-
|
|
|
- :param str trials_path: path at which the trials object is saved
|
|
|
- in binary format. From the trials object we can
|
|
|
- select information about the obtained scores, score variations,
|
|
|
- and pipelines, and parameters tried out so far. If a trials object
|
|
|
- already exists at the given path, it is loaded and the
|
|
|
- search is continued, else, the search is started from
|
|
|
- the beginning.
|
|
|
-
|
|
|
- :param backup_trials_freq: frequecy in interations (trials)
|
|
|
- of saving the trials object at the trials_path.
|
|
|
-
|
|
|
- :param str log_path: Optional, when not provided logs to stdout.
|
|
|
-
|
|
|
- :param callable averaging_func: optional,
|
|
|
- when not provided set to mean. Function
|
|
|
- to aggregate the cross-validated values of the cost function.
|
|
|
- Classic situation is to take the mean,
|
|
|
- another example is, for example mean() - c*var().
|
|
|
- '''
|
|
|
-
|
|
|
- assert(callable(cost_func)),\
|
|
|
- "Parameter 'cost_func' must be a callable"
|
|
|
-
|
|
|
- assert(isinstance(greater_is_better, bool)),\
|
|
|
- "Parameter 'greater_is_better' must be bool type"
|
|
|
-
|
|
|
- assert(isinstance(trials_path, str)),\
|
|
|
- "Parameter 'trials_path' must be of string type"
|
|
|
-
|
|
|
- if averaging_func is not None:
|
|
|
- assert(callable(averaging_func)),\
|
|
|
- "Parameter 'averaging_func' must be a callable"
|
|
|
-
|
|
|
- self._assert_valid_directory(path=trials_path)
|
|
|
-
|
|
|
- self._configer_logger(log_path)
|
|
|
-
|
|
|
- self._cost_func = cost_func
|
|
|
- # is 1 when cost_func is minimized, -1 when cost func is maximized
|
|
|
- self._score_factor = (not greater_is_better) - greater_is_better
|
|
|
- self._trials_path = trials_path
|
|
|
- # is initialized with empty trials object
|
|
|
- self._trials = Trials()
|
|
|
- self._backup_trials_freq = backup_trials_freq
|
|
|
- self._averaging_func = averaging_func or np.mean
|
|
|
- # keeping track of the current search iteration
|
|
|
- self._run_number = 0
|
|
|
- # space and data need to be attached to perform search.
|
|
|
- self._space_attached = False
|
|
|
- self._data_attached = False
|
|
|
-
|
|
|
- # if a trials object already exists at the given path,
|
|
|
- # it is loaded and the search is continued. Else,
|
|
|
- # the search is started from the beginning.
|
|
|
- if os.path.isfile(trials_path):
|
|
|
- try:
|
|
|
- with open(trials_path, "rb") as f:
|
|
|
- self._trials = pickle.load(f)
|
|
|
-
|
|
|
- self._logger.info(("Loaded an existing trials object"
|
|
|
- "Consisting of {} trials")
|
|
|
- .format(len(self._trials.trials)))
|
|
|
-
|
|
|
- except Exception as e:
|
|
|
- self._logger.error(("Trials object could not be loaded. "
|
|
|
- "Training starts from the beginning. "
|
|
|
- "Exit with error {}").format(e))
|
|
|
-
|
|
|
- else:
|
|
|
- self._logger.info(("No existing trials object was found"
|
|
|
- "Initialized an empty trials object."))
|
|
|
-
|
|
|
- self._best_score = self.best_trial_score
|
|
|
-
|
|
|
- def _configer_logger(self, log_path: str = None):
|
|
|
- '''
|
|
|
- Can be replaced with the existing script later.
|
|
|
- When log_path is not provided, logs to stdout.
|
|
|
- '''
|
|
|
-
|
|
|
- self._logger = logging.getLogger(__name__)
|
|
|
-
|
|
|
- if (self._logger.hasHandlers()):
|
|
|
- self._logger.handlers.clear()
|
|
|
-
|
|
|
- if log_path is not None:
|
|
|
- assert(isinstance(log_path, str)),\
|
|
|
- "Parameter 'log_path' must be of string type"
|
|
|
- self._assert_valid_directory(log_path)
|
|
|
-
|
|
|
- handler = logging.FileHandler(log_path)
|
|
|
- else:
|
|
|
- handler = logging.StreamHandler(sys.stdout)
|
|
|
-
|
|
|
- formatter = logging.Formatter(
|
|
|
- '\n %(asctime)s %(levelname)s %(message)s')
|
|
|
-
|
|
|
- handler.setFormatter(formatter)
|
|
|
- self._logger.addHandler(handler)
|
|
|
- self._logger.setLevel("INFO")
|
|
|
-
|
|
|
- def _backup_trials(self):
|
|
|
- '''
|
|
|
- Pickles (Saves) the trials object.
|
|
|
- Used in a scheduler.
|
|
|
- '''
|
|
|
- with open(self._trials_path, "wb") as f:
|
|
|
- pickle.dump(self._trials, f)
|
|
|
-
|
|
|
- def _assert_valid_directory(self, path: str):
|
|
|
- '''
|
|
|
- If the directory of a path does not exist yet,
|
|
|
- creates it.
|
|
|
- '''
|
|
|
- assert(isinstance(path, str)),\
|
|
|
- "Parameter 'path' must of str type"
|
|
|
-
|
|
|
- dirname = os.path.dirname("path")
|
|
|
-
|
|
|
- if len(dirname) > 0:
|
|
|
- os.mkdir(dirname, exists_ok=True)
|
|
|
-
|
|
|
- def attach_space(self, space: pyll.base.Apply = None,
|
|
|
- module_path: str = None,
|
|
|
- name: str = None):
|
|
|
- '''
|
|
|
- :param pyll.base.Apply space: hyperopt space where
|
|
|
- the search is performed. Optional when a space
|
|
|
- is loaded from a python module.
|
|
|
-
|
|
|
- :param str module_path: path to python module
|
|
|
- where the space is defined. Optional when
|
|
|
- the space is provided directly.
|
|
|
-
|
|
|
- :param str name: name of the space loaded from
|
|
|
- a python module. Optional when the space
|
|
|
- is provided directly.
|
|
|
- '''
|
|
|
- assert((space is not None) or
|
|
|
- ((module_path is not None) and (name is not None))),\
|
|
|
- "Either space or (module_path, name) must be provided"
|
|
|
-
|
|
|
- if space is None:
|
|
|
- for p in ["modele_path", "name"]:
|
|
|
- assert(isinstance(p, str)),\
|
|
|
- "Parameter '{}' must be of str type".format(p)
|
|
|
-
|
|
|
- assert(os.path.isfile(module_path)),\
|
|
|
- "Parameter 'module_path' must be a valid file"
|
|
|
-
|
|
|
- module, extension = os.path.splitext(os.path.basename(module_path))
|
|
|
- assert(extension == ",py"),\
|
|
|
- "Parameter 'space' must be read from a python file"
|
|
|
-
|
|
|
- sys.path.insert(module_path)
|
|
|
-
|
|
|
- try:
|
|
|
- from module import name as space
|
|
|
- except ImportError:
|
|
|
- err = "Invalid space location or name"
|
|
|
- self._logger.error(err)
|
|
|
- raise Exception(err)
|
|
|
-
|
|
|
- assert(isinstance(space, pyll.base.Apply)),\
|
|
|
- "Parameter 'space' must be of hyperopt space type"
|
|
|
-
|
|
|
- self._space = space
|
|
|
- self._logger.info("Attached parameter distribution space")
|
|
|
- self._space_attached = True
|
|
|
-
|
|
|
- def _convert_to_array(self, x: (pd.DataFrame, np.ndarray))\
|
|
|
- -> np.ndarray:
|
|
|
- '''
|
|
|
- Converts an DataFrame to an numpy array.
|
|
|
- '''
|
|
|
- if isinstance(x, np.ndarray):
|
|
|
- return x
|
|
|
-
|
|
|
- elif (isinstance(x, pd.core.frame.DataFrame))\
|
|
|
- or (isinstance(x, pd.core.series.Series)):
|
|
|
- return x.values
|
|
|
-
|
|
|
- else:
|
|
|
- e = 'The argument must be a numpy array or a pandas DataFrame'
|
|
|
- self._logger.critical(e)
|
|
|
- raise ValueError(e)
|
|
|
-
|
|
|
- def attach_data(self, X_train: (pd.DataFrame, np.ndarray),
|
|
|
- y_train: (pd.DataFrame, pd.Series, np.ndarray) = None,
|
|
|
- X_val: (pd.DataFrame, np.ndarray) = None,
|
|
|
- y_val: (pd.DataFrame, pd.Series, np.ndarray) = None,
|
|
|
- cv: (list, int) = None):
|
|
|
- '''
|
|
|
- :param array X_train: data on which
|
|
|
- machine learning pipelines are trained
|
|
|
-
|
|
|
- :param array y_train: optional, vector with targets,
|
|
|
- (not all algorithms require a targets)
|
|
|
-
|
|
|
- :param array X_val: optional, validation data.
|
|
|
- When not provided, cross-validated value
|
|
|
- of the cost_func is calculated.
|
|
|
-
|
|
|
- :param array y_val: optional, validation targets
|
|
|
-
|
|
|
- :param list cv: list of tuples containing
|
|
|
- train and validation indices or an integer representing
|
|
|
- the number of folds for a random split of data
|
|
|
- during cross-validation
|
|
|
- example: [([0,1,2], [3,4]), ([1,2,3], [4,5])]
|
|
|
- '''
|
|
|
-
|
|
|
- X_train = self._convert_to_array(X_train)
|
|
|
- if y_train is not None:
|
|
|
- y_train = self._convert_to_array(y_train)
|
|
|
-
|
|
|
- if X_val is not None:
|
|
|
- if cv is not None:
|
|
|
- self._logger.warning(("Both validation set and cv object "
|
|
|
- "are set. Validation score will be "
|
|
|
- "calculated on the validation set!"))
|
|
|
-
|
|
|
- X_val = self._convert_to_array(X_val)
|
|
|
-
|
|
|
- train_inds = list(range(len(X_train)))
|
|
|
- val_inds = list(range(len(X_train),
|
|
|
- len(X_train) + len(X_val)))
|
|
|
-
|
|
|
- # cost is evaluated with a cross validation function
|
|
|
- # that accepts an array and a cv object with
|
|
|
- # indices of the fold splits.
|
|
|
- # Here we create a trivial cv object
|
|
|
- # with one validation split.
|
|
|
- self._cv = [(train_inds, val_inds)]
|
|
|
- self._X = np.concatenate([X_train, X_val])
|
|
|
-
|
|
|
- if y_train is not None:
|
|
|
- if y_val is None:
|
|
|
- err = "Argument y_val must be provided"
|
|
|
- self._logger.critical(err)
|
|
|
- raise ValueError(err)
|
|
|
- else:
|
|
|
- y_val = self._convert_to_array(y_val)
|
|
|
- self._y = np.concatenate([y_train, y_val])
|
|
|
- else:
|
|
|
- self._y = None
|
|
|
- else:
|
|
|
- if cv is None:
|
|
|
- self._logger.warning(("Neither validation set nor cv object "
|
|
|
- "are set. Validation score will be "
|
|
|
- "calculated on 5 randomly "
|
|
|
- "splitted folds."))
|
|
|
-
|
|
|
- self._X = X_train
|
|
|
- self._y = y_train
|
|
|
- self._cv = cv
|
|
|
-
|
|
|
- self._logger.info("Attached data")
|
|
|
- self._data_attached = True
|
|
|
-
|
|
|
- def _evaluate(self, pipeline: Pipeline) -> dict:
|
|
|
- '''
|
|
|
- This method is called in _objective.
|
|
|
-
|
|
|
- Calculates the cost on the attached data.
|
|
|
- This function can be overriden, when the cost
|
|
|
- needs to be calculated differently,
|
|
|
- for example with a tensorflow model.
|
|
|
-
|
|
|
- :param Pipeline pipeline: machine learning pipeline
|
|
|
- that will be evaluated with cross-validation
|
|
|
-
|
|
|
- :output: dictionary with the aggregated
|
|
|
- cross-validation score and
|
|
|
- the score variance.
|
|
|
- '''
|
|
|
-
|
|
|
- scores = cross_validate(estimator=pipeline,
|
|
|
- X=self._X,
|
|
|
- y=self._y,
|
|
|
- cv=self._cv or 5,
|
|
|
- scoring=make_scorer(self._cost_func),
|
|
|
- error_score=np.nan)
|
|
|
-
|
|
|
- return {'value': self._averaging_func(scores['test_score']),
|
|
|
- 'variance': np.var(scores['test_score'])}
|
|
|
-
|
|
|
- def _objective(self, space_element: dict) -> dict:
|
|
|
- '''
|
|
|
- This method is called in search_for_best_pipeline
|
|
|
- inside the hyperopt fmin method.
|
|
|
-
|
|
|
- Uses _evaluate method.
|
|
|
-
|
|
|
- It must take as input a space element
|
|
|
- and produce an output in the form of dictionary
|
|
|
- with 2 obligatory values loss and status
|
|
|
- (STATUS_OK or STATUS_FAIL). Other
|
|
|
- values in the output are optional and can be
|
|
|
- accessed later through the trials object.
|
|
|
-
|
|
|
- :Warning: fmin minimizes the loss,
|
|
|
- when _evaluate returns a value to be maximized,
|
|
|
- it should be multiplied by -1 to obtain loss.
|
|
|
-
|
|
|
- :param dict space_element: must contain keys
|
|
|
- name (with the name of the pipeline),
|
|
|
- pipeline (Pipeline object),
|
|
|
- params (dict of pipeline params)
|
|
|
-
|
|
|
- :output: dictionary with keys
|
|
|
- loss (minimized value),
|
|
|
- status with values STATUS_OK or STATUS_FAIL
|
|
|
- uderstood by hyperopt,
|
|
|
- score (equal to loss or -loss),
|
|
|
- score_variance,
|
|
|
- timestamp (end of execution),
|
|
|
- train_time: execution time
|
|
|
- '''
|
|
|
- assert(isinstance(space_element, dict) and
|
|
|
- set(['name', 'pipeline', 'params']) <= space_element.keys())
|
|
|
-
|
|
|
- assert(isinstance(space_element['name'], str) and
|
|
|
- isinstance(space_element['pipeline'], Pipeline) and
|
|
|
- isinstance(space_element['params'], dict))
|
|
|
-
|
|
|
- start_time = time.time()
|
|
|
-
|
|
|
- if not self._data_attached:
|
|
|
- raise Exception(("Data must be attached in order "
|
|
|
- "in order to effectuate the best"
|
|
|
- "pipeline search"))
|
|
|
-
|
|
|
- self._run_number += 1
|
|
|
-
|
|
|
- pipeline = space_element['pipeline']
|
|
|
- params = space_element['params']
|
|
|
- pipeline.set_params(**params)
|
|
|
-
|
|
|
- self._logger.info(("Run number {0}: "
|
|
|
- "Current score is {1}: "
|
|
|
- "Training pipeline {2} "
|
|
|
- "with parameters: {3}. ").format(
|
|
|
- self._run_number,
|
|
|
- self._best_score,
|
|
|
- space_element['name'],
|
|
|
- params))
|
|
|
-
|
|
|
- try:
|
|
|
- score_stats = self._evaluate(pipeline)
|
|
|
- assert(not np.isnan(score_stats["value"])),\
|
|
|
- "Returned null score"
|
|
|
-
|
|
|
- if self._run_number % self._backup_trials_freq == 0:
|
|
|
- self._backup_trials()
|
|
|
-
|
|
|
- if (self._best_score != self._best_score) or\
|
|
|
- self._score_factor*score_stats["value"] <\
|
|
|
- self._score_factor*self._best_score:
|
|
|
-
|
|
|
- self._logger.info("Score got better, new best score is: {}"
|
|
|
- .format(score_stats["value"]))
|
|
|
-
|
|
|
- self._best_score = score_stats['value']
|
|
|
-
|
|
|
- self._backup_trials()
|
|
|
-
|
|
|
- end_time = time.time()
|
|
|
-
|
|
|
- return {'loss': self._score_factor * score_stats["value"],
|
|
|
- 'status': STATUS_OK,
|
|
|
- 'score': score_stats["value"],
|
|
|
- 'score_variance': score_stats["variance"],
|
|
|
- 'timestamp': datetime.datetime.today(),
|
|
|
- 'train_time': end_time - start_time}
|
|
|
-
|
|
|
- except Exception as e:
|
|
|
-
|
|
|
- self._logger.warning("Trial failed with error {}".format(e))
|
|
|
-
|
|
|
- return {'loss': np.nan,
|
|
|
- 'status': STATUS_FAIL,
|
|
|
- 'score': np.nan,
|
|
|
- 'score_variance': np.nan,
|
|
|
- 'timestamp': datetime.datetime.today(),
|
|
|
- 'train_time': np.nan}
|
|
|
-
|
|
|
- def search_for_best_pipeline(self,
|
|
|
- niter: int,
|
|
|
- algo: callable = tpe.suggest):
|
|
|
- '''
|
|
|
- Method performing the search of the best pipeline in the given space.
|
|
|
- Calls fmin function from the hyperopt library to minimize the output of
|
|
|
- _objective.
|
|
|
-
|
|
|
- :params int niter: number of search iterations
|
|
|
- :param callable algo: now can only take values tpe for a tree-based
|
|
|
- random search or random for random search
|
|
|
- '''
|
|
|
- assert(self._space_attached),\
|
|
|
- "Space must be attach to be able to retrieve this information."
|
|
|
-
|
|
|
- assert(isinstance(niter, int)),\
|
|
|
- "Parameter 'niter' must be of int type"
|
|
|
-
|
|
|
- # right now only two algorithms are provided by
|
|
|
- assert(algo in [tpe.suggest, rand.suggest]),\
|
|
|
- ("Parameter 'algo' can be now only tpe or random. "
|
|
|
- "If other algorithms have been developped by "
|
|
|
- "by hyperopt, plased add them to the list.")
|
|
|
-
|
|
|
- try:
|
|
|
- self._logger.info(("Starting {0} iterations of search "
|
|
|
- "additional to {1} previous"
|
|
|
- .format(niter, len(self._trials.trials))))
|
|
|
-
|
|
|
- best = fmin(fn=self._objective,
|
|
|
- space=space,
|
|
|
- algo=algo,
|
|
|
- trials=self._trials,
|
|
|
- max_evals=len(self._trials.trials) + niter)
|
|
|
-
|
|
|
- self._logger.info(
|
|
|
- "Best score is {0} with variance {1}"
|
|
|
- .format(
|
|
|
- self._trials.best_trial["result"]["score"],
|
|
|
- self._trials.best_trial["result"]["score_variance"]))
|
|
|
-
|
|
|
- self._logger.info(("Finished {0} iterations of search.\n"
|
|
|
- "Best parameters are:\n {1} ")
|
|
|
- .format(niter,
|
|
|
- space_eval(space, best)))
|
|
|
-
|
|
|
- self._backup_trials()
|
|
|
-
|
|
|
- except Exception as e:
|
|
|
- raise ValueError(("Failed to select best "
|
|
|
- "pipeline! Exit with error: {}").format(e))
|
|
|
-
|
|
|
- @property
|
|
|
- def best_trial_score(self) -> float:
|
|
|
- '''
|
|
|
- '''
|
|
|
- if len(self._trials.trials) > 0:
|
|
|
- return self._trials.best_trial["result"]["score"]
|
|
|
- else:
|
|
|
- return np.nan
|
|
|
-
|
|
|
- @property
|
|
|
- def best_trial_score_variance(self) -> float:
|
|
|
- '''
|
|
|
- '''
|
|
|
- if len(self._trials.trials) > 0:
|
|
|
- return self._trials.best_trial["result"]["score_variance"]
|
|
|
- else:
|
|
|
- return np.nan
|
|
|
-
|
|
|
- @property
|
|
|
- def best_trial_pipeline(self) -> Pipeline:
|
|
|
- '''
|
|
|
- '''
|
|
|
- assert(self._space_attached),\
|
|
|
- "Space must be attach to be able to retrieve this information."
|
|
|
-
|
|
|
- if len(self._trials.trials) > 0:
|
|
|
-
|
|
|
- return space_eval(
|
|
|
- space,
|
|
|
- {k: v[0] for k, v in
|
|
|
- self._trials.best_trial['misc']['vals'].items()
|
|
|
- if len(v) > 0})["pipeline"]
|
|
|
- else:
|
|
|
- err = ("Trials object is empty. "
|
|
|
- "Best pipeline cannot be returned")
|
|
|
-
|
|
|
- self._logger.error(err)
|
|
|
- raise Exception(err)
|
|
|
-
|
|
|
- def _ith_trial_loss(self, i: int) -> float:
|
|
|
- '''
|
|
|
- '''
|
|
|
- if len(self._trials.trials) >= i:
|
|
|
- return self._trials.trials[i]['result']['loss']
|
|
|
- else:
|
|
|
- return np.nan
|
|
|
-
|
|
|
- def _ith_trial_element(self, i: int, name: str) -> object:
|
|
|
- '''
|
|
|
- '''
|
|
|
- assert(self._space_attached),\
|
|
|
- "Space must be attach to be able to retrieve this information."
|
|
|
-
|
|
|
- if len(self._trials.trials) >= i:
|
|
|
- return space_eval(self._space,
|
|
|
- {k: v[0] for k, v in
|
|
|
- self._trials.trials[i]['misc']['vals']
|
|
|
- .items() if len(v) > 0})[name]
|
|
|
-
|
|
|
- def _ith_trial_pipeline(self, i: int) -> Pipeline:
|
|
|
- '''
|
|
|
- '''
|
|
|
- return self._ith_trial_element(i=i, name='pipeline')
|
|
|
-
|
|
|
- def _ith_trial_name(self, i: int) -> str:
|
|
|
- '''
|
|
|
- '''
|
|
|
- return self._ith_trial_element(i=i, name='name')
|
|
|
-
|
|
|
- def _ith_trial_params(self, i: int) -> dict:
|
|
|
- '''
|
|
|
- '''
|
|
|
- return self._ith_trial_element(i=i, name='params')
|
|
|
-
|
|
|
- def _ith_trial_timestamp(self, i: int) -> datetime.datetime:
|
|
|
- '''
|
|
|
- '''
|
|
|
- if len(self._trials.trials) >= i:
|
|
|
- return self._trials.trials[i]["result"]["timestamp"]
|
|
|
-
|
|
|
- def get_n_best_trial_pipelines(self, n: int, losses: list = None) -> list:
|
|
|
- '''
|
|
|
- Returns the list of n best pipelines
|
|
|
- documented in trials
|
|
|
- '''
|
|
|
- if len(self._trials.trials) > 0:
|
|
|
- if losses is None:
|
|
|
- losses = [self._ith_trial_loss(i)
|
|
|
- for i in range(len(self._trials.trials))]
|
|
|
-
|
|
|
- best_n_indices = [losses.index(ll)
|
|
|
- for ll in sorted(list(set(losses)))[:n]]
|
|
|
-
|
|
|
- return [self._ith_trial_pipeline(i) for i in best_n_indices]
|
|
|
- else:
|
|
|
- err = ("Trials object is empty. "
|
|
|
- "Best pipeline cannot be returned")
|
|
|
-
|
|
|
- self._logger.error(err)
|
|
|
- raise Exception(err)
|
|
|
-
|
|
|
- def get_n_best_trial_pipelines_of_each_type(self, n: int) -> dict:
|
|
|
- '''
|
|
|
- Returns a dictiionry where keys are pipeline names,
|
|
|
- and values are lists of best pipelines with this name
|
|
|
- '''
|
|
|
- assert(isinstance(n, int)), "Parameter 'n' must be an integer"
|
|
|
-
|
|
|
- if len(self._trials.trials) > 0:
|
|
|
-
|
|
|
- best_pipelines_per_type = {}
|
|
|
- names = [self._ith_trial_name(i)
|
|
|
- for i in range(len(self._trials.trials))]
|
|
|
-
|
|
|
- for nm in names:
|
|
|
- losses = [self._ith_trial_loss(i)
|
|
|
- for i in range(len(self._trials.trials))
|
|
|
- if self._ith_trial_name(i) == nm]
|
|
|
-
|
|
|
- best_pipelines_per_type[nm] = self.get_n_best_trial_pipelines(
|
|
|
- n=n,
|
|
|
- losses=losses)
|
|
|
-
|
|
|
- return best_pipelines_per_type
|
|
|
-
|
|
|
- else:
|
|
|
- err = ("Trials object is empty. "
|
|
|
- "Best pipeline cannot be returned")
|
|
|
-
|
|
|
- self._logger.error(err)
|
|
|
- raise Exception(err)
|
|
|
-
|
|
|
- def write_trials_documentation(self, path: str = None):
|
|
|
- '''
|
|
|
- Saves an excel file with pipeline names, scores,
|
|
|
- parameters, and timestamps.
|
|
|
- '''
|
|
|
- if len(self._trials.trials) > 0:
|
|
|
- path = path or "hyperopt_trials_documentation.xlsx"
|
|
|
-
|
|
|
- assert(isinstance(path, str)),\
|
|
|
- "Parameter 'path' must be of string type"
|
|
|
-
|
|
|
- self._assert_valid_directory(path)
|
|
|
-
|
|
|
- names = [self._ith_trial_name(i)
|
|
|
- for i in range(len(self._trials.trials))]
|
|
|
- scores = [self._score_factor*self._ith_trial_loss(i)
|
|
|
- for i in range(len(self._trials.trials))]
|
|
|
- params = [self._ith_trial_params(i)
|
|
|
- for i in range(len(self._trials.trials))]
|
|
|
- timestamps = [self._ith_trial_timestamp(i)
|
|
|
- for i in range(len(self._trials.trials))]
|
|
|
-
|
|
|
- else:
|
|
|
- names = []
|
|
|
- scores = []
|
|
|
- params = []
|
|
|
- timestamps = []
|
|
|
-
|
|
|
- pd.DataFrame({"name": names,
|
|
|
- "score": scores,
|
|
|
- "params": params,
|
|
|
- "timestamp": timestamps})\
|
|
|
- .to_excel(path)
|
|
|
-
|
|
|
-
|
|
|
-if __name__ == '__main__':
|
|
|
-
|
|
|
- from sklearn.metrics import roc_auc_score, make_scorer
|
|
|
- from xgboost import XGBClassifier
|
|
|
- from sklearn.svm import SVC
|
|
|
- from sklearn.feature_selection import SelectKBest
|
|
|
- from sklearn.decomposition import PCA
|
|
|
- from sklearn.datasets import load_iris
|
|
|
- from pprint import pprint
|
|
|
-
|
|
|
- data = load_iris()
|
|
|
- X = pd.DataFrame(data.data)
|
|
|
- y = pd.Series(data.target)
|
|
|
- # produce a binory variable
|
|
|
- y = (y == 2).astype(int)
|
|
|
- del data
|
|
|
- gc.collect()
|
|
|
-
|
|
|
- # SPACE DEFINITION ########################################
|
|
|
- # (can be moved to a separate python script)
|
|
|
-
|
|
|
- """
|
|
|
- A search space must be a list of dictionaries.
|
|
|
- Each dictionry must have keys:
|
|
|
- name (pipeline name or type),
|
|
|
- pipeline (instance of sklearn.pipeline.Pipeline),
|
|
|
- params (dictionary of distributions for the parameters of
|
|
|
- the pipeline that we want to tune)
|
|
|
-
|
|
|
- Here we have a space that consists of two dictionaries:
|
|
|
- KBEST_XGBOOST and PCA_SVC
|
|
|
- """
|
|
|
- space = []
|
|
|
-
|
|
|
- pipeline_dist_1 = {}
|
|
|
- pipeline_dist_1["name"] = "KBEST_XGBOOST"
|
|
|
-
|
|
|
- """
|
|
|
- A pipeline consists of steps (tuples).
|
|
|
- Each step has a name and an algorithm.
|
|
|
- This pipeline, as a first step performs
|
|
|
- feature selection with SelectKBest and
|
|
|
- as a second step evaluates a machine learning algo (xgboost).
|
|
|
-
|
|
|
- Like all sklearn algorithms, a Pipeline has methods
|
|
|
- fit, predict, set_params, get_params
|
|
|
- """
|
|
|
- pipeline_dist_1["pipeline"] = Pipeline([
|
|
|
- ('kbest', SelectKBest()),
|
|
|
- ('xgb', XGBClassifier())
|
|
|
- ])
|
|
|
- """
|
|
|
- Pipeline parameter dictionaries must be of the form:
|
|
|
- {'kbest__k': 3, xgb__n_estimators: 20},
|
|
|
- each parameter name consists of the step name, __, and parameter name.
|
|
|
-
|
|
|
- Here, instead of values, the parameter names are followed
|
|
|
- by hyperopt distributions.
|
|
|
- Each hyperopt distribution also must have a name,
|
|
|
- due to hyperopt functionality.
|
|
|
-
|
|
|
- Here, we set the hyperopt distribution name to the step name,
|
|
|
- but it does not have to be so. Hyperopt distribution names
|
|
|
- must be different for different elements of the space.
|
|
|
- """
|
|
|
-
|
|
|
- pipeline_dist_1["params"] = {
|
|
|
- 'kbest__k': hp.choice('kbest__k', range(1, 5)),
|
|
|
-
|
|
|
- 'xgb__n_estimators':
|
|
|
- 50 + hp.randint('xgb__n_estimators', 50),
|
|
|
-
|
|
|
- "xgb__learning_rate":
|
|
|
- hp.loguniform('xgb__learning_rate', np.log(0.01), np.log(0.2))
|
|
|
- }
|
|
|
-
|
|
|
- space.append(pipeline_dist_1)
|
|
|
-
|
|
|
- pipeline_dist_2 = {}
|
|
|
- pipeline_dist_2["name"] = "PCA_SVC"
|
|
|
-
|
|
|
- pipeline_dist_2["pipeline"] = Pipeline([
|
|
|
- ('pca', PCA()),
|
|
|
- ('svc', SVC(gamma="scale"))
|
|
|
- ])
|
|
|
-
|
|
|
- pipeline_dist_2["params"] = {
|
|
|
- "pca__n_components": 1 + hp.randint("pca__n_components", 4),
|
|
|
-
|
|
|
- "svc__C": hp.loguniform("svc__C", np.log(0.01), np.log(0.1))
|
|
|
- }
|
|
|
-
|
|
|
- space.append(pipeline_dist_2)
|
|
|
-
|
|
|
- space = hp.choice('pipelines', space)
|
|
|
-
|
|
|
- # TESTING ##########################################################
|
|
|
-
|
|
|
- trials_path = 'TEST_hyperopt_trials.pkl'
|
|
|
-
|
|
|
- doc_path = 'TEST_hyperopt_doc.xlsx'
|
|
|
-
|
|
|
- hp_obj = HyperoptPipelineSelection(cost_func=roc_auc_score,
|
|
|
- greater_is_better=True,
|
|
|
- trials_path=trials_path)
|
|
|
-
|
|
|
- hp_obj.attach_data(X_train=X, y_train=y)
|
|
|
-
|
|
|
- hp_obj.attach_space(space=space)
|
|
|
-
|
|
|
- hp_obj.search_for_best_pipeline(niter=10)
|
|
|
-
|
|
|
- print('\n', '='*20, 'TESTING', '='*20)
|
|
|
-
|
|
|
- print('\n', 'Best score:', hp_obj.best_trial_score)
|
|
|
-
|
|
|
- print('\n', 'Best score variance:', hp_obj.best_trial_score_variance)
|
|
|
-
|
|
|
- print('\n', 'Best pipeline', hp_obj.best_trial_pipeline)
|
|
|
-
|
|
|
- print('\n', 'Best 3 pipelines: \n')
|
|
|
- pprint(hp_obj.get_n_best_trial_pipelines(n=3))
|
|
|
-
|
|
|
- print('\n', 'Best pipeline per type: \n')
|
|
|
- pprint(hp_obj.get_n_best_trial_pipelines_of_each_type(n=1))
|
|
|
-
|
|
|
- hp_obj.write_trials_documentation(path=doc_path)
|
|
|
-
|
|
|
- # os.remove(doc_path)
|
|
|
- # os.remove(trials_path)
|