Parcourir la source

Add array for exceptions in to_list_of_documents

ogert il y a 4 ans
Parent
commit
b43932fd4c

+ 95 - 88
cdplib/db_migration/DataFrameToCollection.py

@@ -51,7 +51,8 @@ class DataFrameToCollection():
     def to_list_of_documents(self, data: pd.DataFrame,
                              grp_fields: list,
                              schema: dict = None,
-                             _final_step: bool = True) -> list:
+                             _final_step: bool = True,
+                             already_reshaped: list = []) -> list:
         '''
         Reshapes a pandas dataframe to a list of documents according
          to a complex (json) mongodb schema
@@ -84,128 +85,134 @@ class DataFrameToCollection():
             if field not in self._unroll_nested_names(data.columns):
                 continue
 
-            field_type = schema["properties"][field]["bsonType"]
+            if field in already_reshaped:
+                print(self._log.green,'Adding ',field, "to reshaped fields",self._log.reset)
+                reshaped_field = data.groupby(grp_fields, sort=False)[field]\
+                                                .apply(self._make_flattened_list_of_distinct)
+                reshaped_fields.append(reshaped_field)
+            else:
+                field_type = schema["properties"][field]["bsonType"]
 
-            # if field has a simple type
-            if field_type not in ["array", "object"]:
+                # if field has a simple type
+                if field_type not in ["array", "object"]:
 
-                grp_fields = [c for c in grp_fields if c in data.columns]
+                    grp_fields = [c for c in grp_fields if c in data.columns]
 
-                # check that there is only one possible value of this field
-                n_distinct_values = data.groupby(grp_fields, sort=False)[field].nunique().max()
+                    # check that there is only one possible value of this field
+                    n_distinct_values = data.groupby(grp_fields, sort=False)[field].nunique().max()
 
-                # n_distinct_valus can be 0 if the column only contains NaN values
-                if n_distinct_values > 1:
-                    err = "Field {0} is not unique with respect to {1}"\
-                          .format(field, grp_fields)
+                    # n_distinct_valus can be 0 if the column only contains NaN values
+                    if n_distinct_values > 1:
+                        err = "Field {0} is not unique with respect to {1}"\
+                            .format(field, grp_fields)
 
-                    self._log.error(err)
-                    raise Exception(err)
+                        self._log.error(err)
+                        raise Exception(err)
 
-                if field not in grp_fields:
-                    reshaped_field = data.groupby(grp_fields, sort=False)[field].first()
-                else:
-                    reshaped_field =\
-                        data[grp_fields].drop_duplicates()\
-                        .set_index(grp_fields, drop=False)[field]
+                    if field not in grp_fields:
+                        reshaped_field = data.groupby(grp_fields, sort=False)[field].first()
+                    else:
+                        reshaped_field =\
+                            data[grp_fields].drop_duplicates()\
+                            .set_index(grp_fields, drop=False)[field]
 
-                reshaped_fields.append(reshaped_field)
+                    reshaped_fields.append(reshaped_field)
 
-            # if field is sub-document (dictionary)
-            elif field_type == "object":
+                # if field is sub-document (dictionary)
+                elif field_type == "object":
 
-                sub_schema = deepcopy(schema["properties"][field])
+                    sub_schema = deepcopy(schema["properties"][field])
 
-                # rename sub-schema properties to match with data column names
-                sub_schema["properties"] =\
-                    {".".join([field, k]): v for k, v
-                     in sub_schema["properties"].items()}
+                    # rename sub-schema properties to match with data column names
+                    sub_schema["properties"] =\
+                        {".".join([field, k]): v for k, v
+                        in sub_schema["properties"].items()}
 
-                sub_data = self.to_list_of_documents(
-                            data=data,
-                            schema=sub_schema,
-                            grp_fields=grp_fields,
-                            _final_step=False)
+                    sub_data = self.to_list_of_documents(
+                                data=data,
+                                schema=sub_schema,
+                                grp_fields=grp_fields,
+                                _final_step=False)
 
-                # Need to be checked since child elements can be empty
-                if sub_data is not None:
+                    # Need to be checked since child elements can be empty
+                    if sub_data is not None:
 
-                    reshaped_field = sub_data.apply(self._make_dict, axis=1)
-                    reshaped_field.name = field
+                        reshaped_field = sub_data.apply(self._make_dict, axis=1)
+                        reshaped_field.name = field
 
-                    reshaped_fields.append(reshaped_field)
+                        reshaped_fields.append(reshaped_field)
 
-            # if field is a list of dictionaries
-            elif field_type == "array":
+                # if field is a list of dictionaries
+                elif field_type == "array":
 
 
-                items_type = schema["properties"][field]["items"]["bsonType"]
+                    items_type = schema["properties"][field]["items"]["bsonType"]
 
-                if items_type == "object":
-                    array_object = time.time()
-                    sub_schema = deepcopy(schema["properties"][field]["items"])
+                    if items_type == "object":
+                        array_object = time.time()
+                        sub_schema = deepcopy(schema["properties"][field]["items"])
 
-                    # rename sub-schema properties to match data column names
-                    sub_schema["properties"] =\
-                        {".".join([field, k]): v for k, v in
-                         sub_schema["properties"].items()}
+                        # rename sub-schema properties to match data column names
+                        sub_schema["properties"] =\
+                            {".".join([field, k]): v for k, v in
+                            sub_schema["properties"].items()}
 
-                    # extend grp fields by sub-fields of field simple types
-                    sub_grp_fields = [f for f in sub_schema["properties"]
-                                      if (sub_schema["properties"][f]["bsonType"] not in ["array", "object"])
-                                      and (f in data.columns)]
+                        # extend grp fields by sub-fields of field simple types
+                        sub_grp_fields = [f for f in sub_schema["properties"]
+                                        if (sub_schema["properties"][f]["bsonType"] not in ["array", "object"])
+                                        and (f in data.columns)]
 
-                    if len(sub_grp_fields) == 0:
-                        err = ("One of the sub-keys in a list of documents"
-                               " must be of simple type for the field {}"
-                               .format(field))
+                        if len(sub_grp_fields) == 0:
+                            err = ("One of the sub-keys in a list of documents"
+                                " must be of simple type for the field {}"
+                                .format(field))
 
-                        self._log.error(err)
-                        raise Exception(err)
+                            self._log.error(err)
+                            raise Exception(err)
 
-                    # group and reshape sub-fields with complex types
-                    sub_data = self.to_list_of_documents(
-                                data=data,
-                                schema=sub_schema,
-                                grp_fields=grp_fields + sub_grp_fields,
-                                _final_step=False)
+                        # group and reshape sub-fields with complex types
+                        sub_data = self.to_list_of_documents(
+                                    data=data,
+                                    schema=sub_schema,
+                                    grp_fields=grp_fields + sub_grp_fields,
+                                    _final_step=False)
 
-                    if sub_data is not None:
+                        if sub_data is not None:
 
-                        # gether the results into a list of dictionaries
-                        sub_data = sub_data.apply(self._make_dict, axis=1)
+                            # gether the results into a list of dictionaries
+                            sub_data = sub_data.apply(self._make_dict, axis=1)
 
-                        sub_data.name = field
-                        sub_data = sub_data.reset_index(grp_fields)
-                        ######################################################
-                        ######## OPTIMIZATIONS MAY BE POSSIBLE HERE ##########
-                        reshaped_field =\
-                            sub_data.groupby(grp_fields, sort=False)[field]\
-                                    .apply(self._make_list_of_distinct)
-                        ######################################################
-                        reshaped_fields.append(reshaped_field)
+                            sub_data.name = field
+                            sub_data = sub_data.reset_index(grp_fields)
+                            ######################################################
+                            ######## OPTIMIZATIONS MAY BE POSSIBLE HERE ##########
+                            reshaped_field =\
+                                sub_data.groupby(grp_fields, sort=False)[field]\
+                                        .apply(self._make_list_of_distinct)
+                            ######################################################
+                            reshaped_fields.append(reshaped_field)
 
 
-                # if field is a list of values with simple type
-                elif items_type == "array":
-                    grp_fields = [c for c in grp_fields if c in data.columns]
+                    # if field is a list of values with simple type
+                    elif items_type == "array":
+                        grp_fields = [c for c in grp_fields if c in data.columns]
 
-                    if field in data.columns:
+                        if field in data.columns:
 
-                        reshaped_field = data.groupby(grp_fields, sort=False)[field]\
-                                             .apply(self._make_list_of_distinct)
+                            reshaped_field = data.groupby(grp_fields, sort=False)[field]\
+                                                .apply(self._make_list_of_distinct)
 
-                        reshaped_fields.append(reshaped_field)
-                else:
+                            reshaped_fields.append(reshaped_field)
+                    else:
 
-                    grp_fields = [c for c in grp_fields if c in data.columns]
+                        grp_fields = [c for c in grp_fields if c in data.columns]
 
-                    if field in data.columns:
+                        if field in data.columns:
 
-                        reshaped_field = data.groupby(grp_fields, sort=False)[field]\
-                                             .apply(self._make_flattened_list_of_distinct)
+                            reshaped_field = data.groupby(grp_fields, sort=False)[field]\
+                                                .apply(self._make_flattened_list_of_distinct)
 
-                        reshaped_fields.append(reshaped_field)
+                            reshaped_fields.append(reshaped_field)
 
         if len(reshaped_fields) > 0:
 

+ 2 - 2
cdplib/db_migration/MigrationCleaning.py

@@ -358,11 +358,11 @@ class MigrationCleaning:
                 elif python_type == bool:
 
                     data[column] = data[column].str.lower()
-                    accepted_bool = {'ja': True, 'j': True, '1': True,
+                    accepted_bool = {'ja': True, 'j': True, '1': True, 1:True
                                      'yes': True, 'y': True, 'true':True,
                                      't': True, 'nein': False, 'n': False,
                                      'no': False, 'false': False, 'f': False,
-                                     '0': False}
+                                     '0': False, 0:False}
                     data[column] = data[column].map(accepted_bool)
                     data[column] = data[column].astype(bool)