|
@@ -1,396 +0,0 @@
|
|
|
-#!/usr/bin/env python3
|
|
|
-# -*- coding: utf-8 -*-
|
|
|
-"""
|
|
|
-Created on Mon Jul 22 11:05:47 2019
|
|
|
-
|
|
|
-@author: tanya
|
|
|
-
|
|
|
-@description: a function to reshape a pandas dataframe to a list of
|
|
|
-(possibly nested) documents with respect to a (json) mongodb schema
|
|
|
-"""
|
|
|
-
|
|
|
-import pandas as pd
|
|
|
-import numpy as np
|
|
|
-import os
|
|
|
-import sys
|
|
|
-
|
|
|
-sys.path.append(os.getcwd())
|
|
|
-
|
|
|
-
|
|
|
-class DataFrameToCollection():
|
|
|
- '''
|
|
|
- '''
|
|
|
- def __init__(self, schema_path: str):
|
|
|
- '''
|
|
|
- '''
|
|
|
- from cdplib.log import Log
|
|
|
- import json
|
|
|
-
|
|
|
- self._log = Log("ParseJsonSchema")
|
|
|
-
|
|
|
-
|
|
|
- if not os.path.isfile(schema_path):
|
|
|
- err = "JsonSchema not found"
|
|
|
- self._log.error(err)
|
|
|
- raise FileNotFoundError(err)
|
|
|
-
|
|
|
- # load schema to dictionary if it is a valid json file
|
|
|
- try:
|
|
|
- with open(schema_path, "r") as f:
|
|
|
- self.schema = json.load(f)
|
|
|
-
|
|
|
- except Exception as e:
|
|
|
- err = ("Could not load json schema, "
|
|
|
- "Obtained error {}".format(e))
|
|
|
-
|
|
|
- self._log.error(err)
|
|
|
- raise Exception(err)
|
|
|
-
|
|
|
-
|
|
|
- def to_list_of_documents(self, data: pd.DataFrame,
|
|
|
- grp_fields: list,
|
|
|
- schema: dict = None,
|
|
|
- _final_step: bool = True) -> list:
|
|
|
- '''
|
|
|
- Reshapes a pandas dataframe to a list of documents according
|
|
|
- to a complex (json) mongodb schema
|
|
|
-
|
|
|
- Remark1: column names of data need to reflect the "nestedness"
|
|
|
- of the field in the mongodb schema with the help of a "." separator
|
|
|
- Example: field.sub_field_1, field.sub_field_2
|
|
|
-
|
|
|
- Remark2: if the schema is stored as a json file, first load it
|
|
|
- to a dictionary with the help of the python json module
|
|
|
-
|
|
|
- The function goes recurisively through all the fields and reshapes
|
|
|
- them correspondingly depending on whether the field is an array,
|
|
|
- an object, or simple field. For each field we group the data by the
|
|
|
- grp_fields and reshape it accordingly, the result is a pandas Series.
|
|
|
- In the end all the series are collected and concatenated.
|
|
|
- '''
|
|
|
- from copy import deepcopy
|
|
|
-
|
|
|
- data = self._melt_duplicated_columns(data)
|
|
|
-
|
|
|
- reshaped_fields = []
|
|
|
-
|
|
|
- if schema is None:
|
|
|
- schema = self.schema
|
|
|
-
|
|
|
- for field in schema["properties"]:
|
|
|
-
|
|
|
- if field not in self._unroll_nested_names(data.columns):
|
|
|
- continue
|
|
|
-
|
|
|
- field_type = schema["properties"][field]["bsonType"]
|
|
|
-
|
|
|
- # if field has a simple type
|
|
|
- if field_type not in ["array", "object"]:
|
|
|
-
|
|
|
- grp_fields = [c for c in grp_fields if c in data.columns]
|
|
|
-
|
|
|
- # check that there is only one possible value of this field
|
|
|
- n_distinct_values = data.groupby(grp_fields, sort=False)[field].nunique().max()
|
|
|
-
|
|
|
- if n_distinct_values != 1:
|
|
|
- err = "Field {0} is not unique with respect to {1}"\
|
|
|
- .format(field, grp_fields)
|
|
|
-
|
|
|
- self._log.error(err)
|
|
|
- raise Exception(err)
|
|
|
-
|
|
|
- if field not in grp_fields:
|
|
|
- reshaped_field = data.groupby(grp_fields, sort=False)[field].first()
|
|
|
- else:
|
|
|
- reshaped_field =\
|
|
|
- data[grp_fields].drop_duplicates()\
|
|
|
- .set_index(grp_fields, drop=False)[field]
|
|
|
-
|
|
|
- reshaped_fields.append(reshaped_field)
|
|
|
-
|
|
|
- # if field is sub-document (dictionary)
|
|
|
- elif field_type == "object":
|
|
|
-
|
|
|
- sub_schema = deepcopy(schema["properties"][field])
|
|
|
-
|
|
|
- # rename sub-schema properties to match with data column names
|
|
|
- sub_schema["properties"] =\
|
|
|
- {".".join([field, k]): v for k, v
|
|
|
- in sub_schema["properties"].items()}
|
|
|
-
|
|
|
- sub_data = self.to_list_of_documents(
|
|
|
- data=data,
|
|
|
- schema=sub_schema,
|
|
|
- grp_fields=grp_fields,
|
|
|
- _final_step=False)
|
|
|
-
|
|
|
- reshaped_field = sub_data.apply(self._make_dict, axis=1)
|
|
|
- reshaped_field.name = field
|
|
|
-
|
|
|
- reshaped_fields.append(reshaped_field)
|
|
|
-
|
|
|
- # if field is a list of dictionaries
|
|
|
- elif field_type == "array":
|
|
|
-
|
|
|
- items_type = schema["properties"][field]["items"]["bsonType"]
|
|
|
-
|
|
|
- if items_type == "object":
|
|
|
-
|
|
|
- sub_schema = deepcopy(schema["properties"][field]["items"])
|
|
|
-
|
|
|
- # rename sub-schema properties to match data column names
|
|
|
- sub_schema["properties"] =\
|
|
|
- {".".join([field, k]): v for k, v in
|
|
|
- sub_schema["properties"].items()}
|
|
|
-
|
|
|
- # extend grp fields by sub-fields of field simple types
|
|
|
- sub_grp_fields = [f for f in sub_schema["properties"]
|
|
|
- if (sub_schema["properties"][f]["bsonType"] not in ["array", "object"])
|
|
|
- and (f in data.columns)]
|
|
|
-
|
|
|
- if len(sub_grp_fields) == 0:
|
|
|
- err = ("One of the sub-keys in a list of documents"
|
|
|
- " must be of simple type for the field {}"
|
|
|
- .format(field))
|
|
|
-
|
|
|
- self._log.error(err)
|
|
|
- raise Exception(err)
|
|
|
-
|
|
|
- # group and reshape sub-fields with complex types
|
|
|
- sub_data = self.to_list_of_documents(
|
|
|
- data=data,
|
|
|
- schema=sub_schema,
|
|
|
- grp_fields=grp_fields + sub_grp_fields,
|
|
|
- _final_step=False)
|
|
|
-
|
|
|
- if sub_data is not None:
|
|
|
-
|
|
|
- # gether the results into a list of dictionaries
|
|
|
- sub_data = sub_data.apply(self._make_dict, axis=1)
|
|
|
-
|
|
|
- sub_data.name = field
|
|
|
- sub_data = sub_data.reset_index(grp_fields)
|
|
|
-
|
|
|
- reshaped_field =\
|
|
|
- sub_data.groupby(grp_fields, sort=False)[field]\
|
|
|
- .apply(self._make_list_of_distinct)
|
|
|
-
|
|
|
- reshaped_fields.append(reshaped_field)
|
|
|
-
|
|
|
- # if field is a list of values with simple type
|
|
|
- elif items_type == "array":
|
|
|
-
|
|
|
- grp_fields = [c for c in grp_fields if c in data.columns]
|
|
|
-
|
|
|
- if field in data.columns:
|
|
|
-
|
|
|
- reshaped_field = data.groupby(grp_fields, sort=False)[field]\
|
|
|
- .apply(self._make_list_of_distinct)
|
|
|
-
|
|
|
- reshaped_fields.append(reshaped_field)
|
|
|
-
|
|
|
- else:
|
|
|
-
|
|
|
- grp_fields = [c for c in grp_fields if c in data.columns]
|
|
|
-
|
|
|
- if field in data.columns:
|
|
|
-
|
|
|
- reshaped_field = data.groupby(grp_fields, sort=False)[field]\
|
|
|
- .apply(self._make_flattened_list_of_distinct)
|
|
|
-
|
|
|
- reshaped_fields.append(reshaped_field)
|
|
|
-
|
|
|
- if len(reshaped_fields) > 0:
|
|
|
-
|
|
|
- reshaped_fields = pd.concat(reshaped_fields, sort=False, axis=1)
|
|
|
-
|
|
|
- if _final_step:
|
|
|
- # dropping the index names if it is the final step,
|
|
|
- # if not the index is needed for merging
|
|
|
- reshaped_fields =\
|
|
|
- reshaped_fields.drop(list(reshaped_fields.index.names), axis=1, errors="ignore")\
|
|
|
- .reset_index(drop=False)
|
|
|
-
|
|
|
- self._log.info("Done reshaping the dataframe to a list of documents")
|
|
|
-
|
|
|
- return reshaped_fields
|
|
|
-
|
|
|
- else:
|
|
|
- return
|
|
|
-
|
|
|
- def _melt_duplicated_columns(self, data: pd.DataFrame) -> pd.DataFrame:
|
|
|
- '''
|
|
|
- '''
|
|
|
- data = data.copy(deep=True)
|
|
|
-
|
|
|
- for c in set(data.columns):
|
|
|
- if isinstance(data[c], pd.DataFrame):
|
|
|
- """
|
|
|
- data = pd.melt(data, id_vars=[cc for cc in data.columns
|
|
|
- if cc != c], value_vars=c)\
|
|
|
- .drop("variable", axis=1)\
|
|
|
- .rename(columns={"value": c})
|
|
|
- """
|
|
|
- data["temp"] = data[c].apply(self._make_list, axis=1)
|
|
|
- data.drop(c, axis=1, inplace=True)
|
|
|
- data = data.rename(columns={"temp": c})
|
|
|
-
|
|
|
- return data
|
|
|
-
|
|
|
- def _make_dict(self, x: pd.Series) -> dict:
|
|
|
- '''
|
|
|
- Transforms pandas series to a dictionary
|
|
|
- is meant to be applied to a dataframe in axis = 1,
|
|
|
- then the index of the input series are the column names
|
|
|
- of the dataframe
|
|
|
- '''
|
|
|
- def custom_is_null(y):
|
|
|
- if isinstance(pd.notnull(y), bool):
|
|
|
- return pd.notnull(y)
|
|
|
- else:
|
|
|
- return True
|
|
|
-
|
|
|
- return {f.split(".")[-1]: x[f] for f in x.index
|
|
|
- if custom_is_null(x[f])}
|
|
|
-
|
|
|
- def _make_list(self, x: pd.Series) -> list:
|
|
|
- '''
|
|
|
- return: list of values in a series
|
|
|
- '''
|
|
|
- return list(x)
|
|
|
-
|
|
|
- def _make_list_of_distinct(self, x: pd.Series) -> list:
|
|
|
- '''
|
|
|
- return: list of unique values from a Series where
|
|
|
- entries are arbitrary objects
|
|
|
- (pandas unique() method does not work if entries are of complex types)
|
|
|
- '''
|
|
|
- uniques = pd.DataFrame({"temp": x.tolist()})\
|
|
|
- .assign(temp_str=lambda y: y["temp"].astype(str))\
|
|
|
- .drop_duplicates(subset=["temp_str"])\
|
|
|
- .drop("temp_str", axis=1).iloc[:, 0].tolist()
|
|
|
-
|
|
|
- def is_empty(y):
|
|
|
- is_empty_dict = (isinstance(y, dict) and (len(y) == 0))
|
|
|
- is_empty_list = (isinstance(y, list) and (len(y) == 0))
|
|
|
- return is_empty_dict or is_empty_list
|
|
|
-
|
|
|
- return [el for el in uniques if not is_empty(el)]
|
|
|
-
|
|
|
- def _make_flattened_list_of_distinct(self, x: pd.Series) -> list:
|
|
|
- '''
|
|
|
- return: list of unique values from a Series where
|
|
|
- entries are arbitrary objects
|
|
|
- (pandas unique() method does not work if entries are of complex types)
|
|
|
- '''
|
|
|
- uniques = self._make_list_of_distinct(x)
|
|
|
- return uniques[0]
|
|
|
-
|
|
|
- def _unroll_nested_names(self, names: list) -> list:
|
|
|
- '''
|
|
|
- Example: transform a list ["name.firstname", "name.surname"]
|
|
|
- into ["name", "name.firstname", "name.surname"]
|
|
|
- '''
|
|
|
- unrolled = []
|
|
|
-
|
|
|
- for c in names:
|
|
|
- splitted = c.split(".")
|
|
|
- for i in range(len(splitted)):
|
|
|
- unrolled.append(".".join(splitted[:i+1]))
|
|
|
-
|
|
|
- return unrolled
|
|
|
-
|
|
|
-
|
|
|
-if __name__ == "__main__":
|
|
|
-
|
|
|
- # Testing
|
|
|
-
|
|
|
- df = pd.DataFrame({
|
|
|
- "a": [1]*8 + [2]*8,
|
|
|
- "b": [10]*8 + [20]*8,
|
|
|
- "c": [100, 200]*8,
|
|
|
- "d.da": [11]*8 + [22]*8,
|
|
|
- "d.db": [33]*8 + [34]*8,
|
|
|
- "e.ea.eaa": [5]*8 + [55]*8,
|
|
|
- "e.ea.eab": [6]*8 + [66]*8,
|
|
|
- "e.eb": [2, 2, 3, 3]*4,
|
|
|
- "e.ec.eca": [1, 2, 3, 4]*4,
|
|
|
- "e.ec.ecb": [5, 6, 7, 8]*4,
|
|
|
- "f.fa": [1]*4 + [3]*4 + [11]*4 + [33]*4,
|
|
|
- "f.fb": [2]*4 + [3]*2 + [4]*2 + [22]*4 + [44]*4})
|
|
|
-
|
|
|
- duplicate = pd.DataFrame({"c": [300, 400]*8})
|
|
|
-
|
|
|
- df = pd.concat([df, duplicate], axis=1)
|
|
|
-
|
|
|
- schm = {
|
|
|
- "bsonType": "object",
|
|
|
- "required": ["a"],
|
|
|
- "properties": {
|
|
|
-
|
|
|
- "a": {"bsonType": "integer"},
|
|
|
-
|
|
|
- "b": {"bsonType": "integer"},
|
|
|
-
|
|
|
- "c": {
|
|
|
- "bsonType": "array",
|
|
|
- "items": {"bsonType": "integer"}
|
|
|
- },
|
|
|
- "d": {
|
|
|
- "bsonType": "object",
|
|
|
- "properties": {
|
|
|
- "da": {"bsonType": "integer"},
|
|
|
- "db": {"bsonType": "integer"}
|
|
|
- }
|
|
|
- },
|
|
|
- "e": {
|
|
|
- "bsonType": "object",
|
|
|
- "properties": {
|
|
|
- "ea": {
|
|
|
- "bsonType": "object",
|
|
|
- "properties": {
|
|
|
- "eaa": {"bsonType": "integer"},
|
|
|
- "eab": {"bsonType": "integer"}
|
|
|
- }
|
|
|
-
|
|
|
- },
|
|
|
-
|
|
|
- "eb": {
|
|
|
- "bsonType": "array",
|
|
|
- "items": {"bsonType": "integer"}
|
|
|
- },
|
|
|
-
|
|
|
- "ec": {
|
|
|
- "bsonType": "array",
|
|
|
- "items": {
|
|
|
- "bsonType": "object",
|
|
|
- "properties": {
|
|
|
- "eca": {"bsonType": "integer"},
|
|
|
- "ecb": {"bsonType": "integer"}
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- },
|
|
|
- "f": {
|
|
|
- "bsonType": "array",
|
|
|
- "items": {
|
|
|
- "bsonType": "object",
|
|
|
- "properties": {
|
|
|
- "fa": {"bsonType": "integer"},
|
|
|
- "fb": {
|
|
|
- "bsonType": "array",
|
|
|
- "items": {"bsonType": "integer"}
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- grp_fields = ["a"]
|
|
|
-
|
|
|
- result = DataFrameToCollection().to_list_of_documents(
|
|
|
- data=df,
|
|
|
- schema=schm,
|
|
|
- grp_fields=grp_fields)
|