|
@@ -259,7 +259,7 @@ class MongodbHandler:
|
|
except Exception as error:
|
|
except Exception as error:
|
|
self._log.log_and_raise_error(('An error occured trying to query data from {}, with query {}: {}:{}. \nError:{}').format(collection_name, attribute_value, comparison_operator, attribute_value, error))
|
|
self._log.log_and_raise_error(('An error occured trying to query data from {}, with query {}: {}:{}. \nError:{}').format(collection_name, attribute_value, comparison_operator, attribute_value, error))
|
|
|
|
|
|
- return self.convert_mongo_data_into_dataframe(data, index)
|
|
|
|
|
|
+ return self.convert_mongo_data_into_dataframe(data, index, collection_name)
|
|
|
|
|
|
def aggregate_data_and_generate_dataframe(self, collection_name: str, aggregation_pipeline: list, index: str = None):
|
|
def aggregate_data_and_generate_dataframe(self, collection_name: str, aggregation_pipeline: list, index: str = None):
|
|
|
|
|
|
@@ -268,14 +268,17 @@ class MongodbHandler:
|
|
except Exception as error:
|
|
except Exception as error:
|
|
self._log.log_and_raise_error(('A problem occured when aggregating the collection {} with the pipeline {}. \nError: {}').format(collection_name, aggregation_pipeline, error))
|
|
self._log.log_and_raise_error(('A problem occured when aggregating the collection {} with the pipeline {}. \nError: {}').format(collection_name, aggregation_pipeline, error))
|
|
|
|
|
|
- return self.convert_mongo_data_into_dataframe(data, index)
|
|
|
|
|
|
+ return self.convert_mongo_data_into_dataframe(data, index, collection_name)
|
|
|
|
|
|
- def convert_mongo_data_into_dataframe(self, data, index: str = None) -> pd.DataFrame():
|
|
|
|
|
|
+ def convert_mongo_data_into_dataframe(self, data, index: str = None, collection_name: str = None) -> pd.DataFrame():
|
|
|
|
|
|
data = list(data)
|
|
data = list(data)
|
|
try:
|
|
try:
|
|
if len(data)> 0:
|
|
if len(data)> 0:
|
|
- self._log.info(('{} rows were fetched from the database').format(len(data)))
|
|
|
|
|
|
+ if collection_name:
|
|
|
|
+ self._log.info(('{} rows were fetched from the {} collection').format(len(data), collection_name))
|
|
|
|
+ else:
|
|
|
|
+ self._log.info(('{} rows were fetched from the database').format(len(data)))
|
|
df = pd.DataFrame(data)
|
|
df = pd.DataFrame(data)
|
|
if index is not None:
|
|
if index is not None:
|
|
df.set_index(index, inplace=True)
|
|
df.set_index(index, inplace=True)
|