Browse Source

added a new method to CleaningUtils

tanja 5 years ago
parent
commit
f2a8a4e720
2 changed files with 48 additions and 2 deletions
  1. 1 1
      cdplib/db_handlers/SQLHandler.py
  2. 47 1
      cdplib/utils/CleaningUtils.py

+ 1 - 1
cdplib/db_handlers/SQLHandler.py

@@ -378,7 +378,7 @@ class SQLHandler:
 
     def get_column_names(self, tablename: str,
                          schema: str = None,
-                         query: str = None):
+                         query: str = None) -> list:
         '''
         Tries to retrieve column information from database with given query.
         If this does not work, tries to select one row from the given table.

+ 47 - 1
cdplib/utils/CleaningUtils.py

@@ -12,9 +12,12 @@ import numpy as np
 
 class CleaningUtils:
     '''
+    Unites different methods for data cleaning
     '''
     def convert_dates(series: pd.Series, formats: (str, list)) -> pd.Series:
         '''
+        Converts values from string to date in a pandas Series
+         where possibly multiple date formats are mixed
         '''
         formats = list(formats)
 
@@ -37,8 +40,14 @@ class CleaningUtils:
 
         return converted
 
-    def standarize_writing(self, s: str, to_lowercase: bool = True):
+    def standarize_writing(self, s: str, to_lowercase: bool = True) -> str:
         '''
+         Cleans a string: replaces german letters by their utf-8 encoding,
+          replaces all non-letter characters by underscore,
+          converts to lowercase.
+
+          Used for standarizing names, for example, before writing
+          to a database.
         '''
         import re
 
@@ -51,6 +60,7 @@ class CleaningUtils:
                                     "Ö": "Oe"}
 
         s = s.encode('raw_unicode_escape').decode('raw_unicode_escape')
+
         for char, correct_char in german_character_mapping.items():
             s = s.replace(char, correct_char)
 
@@ -61,3 +71,39 @@ class CleaningUtils:
 
         return s
 
+    def melt_duplicated_columns(self, df: pd.DataFrame, suffix: str = "", prefix: str = "") -> pd.DataFrame:
+        '''
+        If a dataframe has multiple columns with the same name
+         (up to a prefix or a suffix),
+         melts the columns together in one
+
+        :parame suffix: string or regex up to which we consider names as duplicated
+        :parame prefix: string or regex up to which we consider names as duplicated
+        '''
+        from collections import Counter
+
+        import re
+
+        # remove the suffix and the prefix from the column names (now the duplicates are truely duplicates)
+        df.columns = [re.sub(re.compile(prefix), "", re.sub(re.compile(suffix), "", c)) for c in df.columns]
+
+        column_counter = Counter(df.columns)
+
+        id_vars = [c for c in column_counter if column_counter[c] == 1]
+
+        dup_vars = [c for c in column_counter if column_counter[c] > 1]
+
+        if len(dup_vars) == 0:
+            return df
+
+        else:
+            df_melted = []
+
+            for dup_var in dup_vars:
+                dup_var_melted = pd.melt(frame=df, id_vars=id_vars, value_vars=[dup_vars], value_name=dup_var)\
+                                   .set_index(id_vars)[dup_var]
+
+                df_melted.append(dup_var_melted)
+
+            return pd.concat(df_melted, axis=1, sort=False).reset_index()
+