#include // printf #include // alloc, free, vsnprintf #include #include // va_start, va_end #include #include "opcua.h" #include "ua_basictypes.h" static inline UA_Int32 UA_VTable_isValidType(UA_Int32 type) { if(type < 0 /* UA_BOOLEAN */ || type > 271 /* UA_INVALID */) return UA_ERROR; return UA_SUCCESS; } UA_Int32 UA_encodeBinary(void const * data, UA_Int32 *pos, UA_Int32 type, UA_ByteString* dst) { if(UA_VTable_isValidType(type) != UA_SUCCESS) return UA_ERROR; return UA_[type].encodeBinary(data,pos,dst); } UA_Int32 UA_decodeBinary(UA_ByteString const * data, UA_Int32* pos, UA_Int32 type, void* dst){ if(UA_VTable_isValidType(type) != UA_SUCCESS) return UA_ERROR; UA_[type].init(dst); return UA_[type].decodeBinary(data,pos,dst); } UA_Int32 UA_calcSize(void const * data, UA_UInt32 type) { if(UA_VTable_isValidType(type) != UA_SUCCESS) return UA_ERROR; return (UA_[type].calcSize)(data); } UA_Int32 UA_Array_calcSize(UA_Int32 nElements, UA_Int32 type, void const * const * data) { if(UA_VTable_isValidType(type) != UA_SUCCESS) return 0; UA_Int32 length = sizeof(UA_Int32); UA_Int32 i; if (nElements > 0) { for(i=0; i [p1, p2, p3, p4] * +-> struct 1, ... */ UA_Int32 UA_Array_new(void ***p,UA_Int32 noElements, UA_Int32 type) { UA_Int32 retval = UA_SUCCESS; UA_Int32 i = 0; // Get memory for the pointers CHECKED_DECODE(UA_VTable_isValidType(type), ;); CHECKED_DECODE(UA_alloc((void**)p, sizeof(void*)*noElements), ;); // Then allocate all the elements. We could allocate all the members in one chunk and // calculate the addresses to prevent memory segmentation. This would however not call // init for each member void *arr = *p; for(; i dst->length ) { \ return UA_ERR_INVALID_VALUE; \ } else { // Attention! this macro works only for TYPEs with storageSize = encodingSize #define UA_TYPE_START_DECODEBINARY(TYPE) \ UA_Int32 TYPE##_decodeBinary(UA_ByteString const * src, UA_Int32* pos, TYPE * dst) { \ UA_Int32 retval = UA_SUCCESS; \ if ( *pos < 0 || *pos+TYPE##_calcSize(UA_NULL) > src->length ) { \ return UA_ERR_INVALID_VALUE; \ } else { #define UA_TYPE_END_XXCODEBINARY \ } \ return retval; \ } UA_TYPE_METHOD_CALCSIZE_SIZEOF(UA_Boolean) UA_TYPE_START_ENCODEBINARY(UA_Boolean) UA_Boolean tmpBool = ((*src > 0) ? UA_TRUE : UA_FALSE); memcpy(&(dst->data[(*pos)++]), &tmpBool, sizeof(UA_Boolean)); UA_TYPE_END_XXCODEBINARY UA_TYPE_START_DECODEBINARY(UA_Boolean) *dst = ((UA_Boolean) (src->data[(*pos)++]) > 0) ? UA_TRUE : UA_FALSE; UA_TYPE_END_XXCODEBINARY UA_Int32 UA_Boolean_init(UA_Boolean * p){ if(p==UA_NULL)return UA_ERROR; *p = UA_FALSE; return UA_SUCCESS; } UA_TYPE_METHOD_DELETE_FREE(UA_Boolean) UA_TYPE_METHOD_DELETEMEMBERS_NOACTION(UA_Boolean) UA_TYPE_METHOD_NEW_DEFAULT(UA_Boolean) UA_TYPE_METHOD_COPY(UA_Boolean) UA_TYPE_METHOD_CALCSIZE_SIZEOF(UA_Byte) UA_TYPE_START_ENCODEBINARY(UA_Byte) dst->data[(*pos)++] = *src; UA_TYPE_END_XXCODEBINARY UA_TYPE_START_DECODEBINARY(UA_Byte) *dst = src->data[(*pos)++]; UA_TYPE_END_XXCODEBINARY UA_TYPE_METHOD_DELETE_FREE(UA_Byte) UA_TYPE_METHOD_DELETEMEMBERS_NOACTION(UA_Byte) UA_TYPE_METHOD_INIT_DEFAULT(UA_Byte) UA_TYPE_METHOD_NEW_DEFAULT(UA_Byte) UA_TYPE_METHOD_COPY(UA_Byte) UA_TYPE_METHOD_CALCSIZE_SIZEOF(UA_SByte) UA_TYPE_START_ENCODEBINARY(UA_SByte) dst->data[(*pos)++] = *src; UA_TYPE_END_XXCODEBINARY UA_TYPE_START_DECODEBINARY(UA_SByte) *dst = src->data[(*pos)++]; UA_TYPE_END_XXCODEBINARY UA_TYPE_METHOD_DELETE_FREE(UA_SByte) UA_TYPE_METHOD_DELETEMEMBERS_NOACTION(UA_SByte) UA_TYPE_METHOD_INIT_DEFAULT(UA_SByte) UA_TYPE_METHOD_NEW_DEFAULT(UA_SByte) UA_TYPE_METHOD_COPY(UA_SByte) UA_TYPE_METHOD_CALCSIZE_SIZEOF(UA_UInt16) UA_TYPE_START_ENCODEBINARY(UA_UInt16) dst->data[(*pos)++] = (*src & 0x00FF) >> 0; dst->data[(*pos)++] = (*src & 0xFF00) >> 8; UA_TYPE_END_XXCODEBINARY UA_TYPE_START_DECODEBINARY(UA_UInt16) *dst = (UA_UInt16) src->data[(*pos)++] << 0; *dst |= (UA_UInt16) src->data[(*pos)++] << 8; UA_TYPE_END_XXCODEBINARY UA_TYPE_METHOD_DELETE_FREE(UA_UInt16) UA_TYPE_METHOD_DELETEMEMBERS_NOACTION(UA_UInt16) UA_TYPE_METHOD_INIT_DEFAULT(UA_UInt16) UA_TYPE_METHOD_NEW_DEFAULT(UA_UInt16) UA_TYPE_METHOD_COPY(UA_UInt16) /** UA_Int16 - signed integer, 2 bytes */ UA_TYPE_METHOD_CALCSIZE_SIZEOF(UA_Int16) UA_TYPE_START_ENCODEBINARY(UA_Int16) retval = UA_UInt16_encodeBinary((UA_UInt16 const *) src,pos,dst); UA_TYPE_END_XXCODEBINARY UA_TYPE_START_DECODEBINARY(UA_Int16) *dst = (UA_Int16) (((UA_SByte) (src->data[(*pos)++]) & 0xFF) << 0); *dst |= (UA_Int16) (((UA_SByte) (src->data[(*pos)++]) & 0xFF) << 8); UA_TYPE_END_XXCODEBINARY UA_TYPE_METHOD_DELETE_FREE(UA_Int16) UA_TYPE_METHOD_DELETEMEMBERS_NOACTION(UA_Int16) UA_TYPE_METHOD_INIT_DEFAULT(UA_Int16) UA_TYPE_METHOD_NEW_DEFAULT(UA_Int16) UA_TYPE_METHOD_COPY(UA_Int16) /** UA_Int32 - signed integer, 4 bytes */ UA_TYPE_METHOD_CALCSIZE_SIZEOF(UA_Int32) UA_TYPE_START_ENCODEBINARY(UA_Int32) dst->data[(*pos)++] = (*src & 0x000000FF) >> 0; dst->data[(*pos)++] = (*src & 0x0000FF00) >> 8; dst->data[(*pos)++] = (*src & 0x00FF0000) >> 16; dst->data[(*pos)++] = (*src & 0xFF000000) >> 24; UA_TYPE_END_XXCODEBINARY UA_TYPE_START_DECODEBINARY(UA_Int32) *dst = (UA_Int32) (((UA_SByte) (src->data[(*pos)++]) & 0xFF) << 0); *dst |= (UA_Int32) (((UA_SByte) (src->data[(*pos)++]) & 0xFF) << 8); *dst |= (UA_Int32) (((UA_SByte) (src->data[(*pos)++]) & 0xFF) << 16); *dst |= (UA_Int32) (((UA_SByte) (src->data[(*pos)++]) & 0xFF) << 24); UA_TYPE_END_XXCODEBINARY UA_TYPE_METHOD_DELETE_FREE(UA_Int32) UA_TYPE_METHOD_DELETEMEMBERS_NOACTION(UA_Int32) UA_TYPE_METHOD_INIT_DEFAULT(UA_Int32) UA_TYPE_METHOD_NEW_DEFAULT(UA_Int32) UA_TYPE_METHOD_COPY(UA_Int32) /** UA_UInt32 - unsigned integer, 4 bytes */ UA_TYPE_METHOD_CALCSIZE_SIZEOF(UA_UInt32) UA_TYPE_START_ENCODEBINARY(UA_UInt32) retval = UA_Int32_encodeBinary((UA_Int32 const *)src,pos,dst); UA_TYPE_END_XXCODEBINARY UA_TYPE_START_DECODEBINARY(UA_UInt32) UA_UInt32 t1 = (UA_UInt32)((UA_Byte)(src->data[(*pos)++] & 0xFF)); UA_UInt32 t2 = (UA_UInt32)((UA_Byte)(src->data[(*pos)++]& 0xFF) << 8); UA_UInt32 t3 = (UA_UInt32)((UA_Byte)(src->data[(*pos)++]& 0xFF) << 16); UA_UInt32 t4 = (UA_UInt32)((UA_Byte)(src->data[(*pos)++]& 0xFF) << 24); *dst = t1 + t2 + t3 + t4; UA_TYPE_END_XXCODEBINARY UA_TYPE_METHOD_DELETE_FREE(UA_UInt32) UA_TYPE_METHOD_DELETEMEMBERS_NOACTION(UA_UInt32) UA_TYPE_METHOD_INIT_DEFAULT(UA_UInt32) UA_TYPE_METHOD_NEW_DEFAULT(UA_UInt32) UA_TYPE_METHOD_COPY(UA_UInt32) /** UA_Int64 - signed integer, 8 bytes */ UA_TYPE_METHOD_CALCSIZE_SIZEOF(UA_Int64) UA_TYPE_START_ENCODEBINARY(UA_Int64) dst->data[(*pos)++] = (*src & 0x00000000000000FF) >> 0; dst->data[(*pos)++] = (*src & 0x000000000000FF00) >> 8; dst->data[(*pos)++] = (*src & 0x0000000000FF0000) >> 16; dst->data[(*pos)++] = (*src & 0x00000000FF000000) >> 24; dst->data[(*pos)++] = (*src & 0x000000FF00000000) >> 32; dst->data[(*pos)++] = (*src & 0x0000FF0000000000) >> 40; dst->data[(*pos)++] = (*src & 0x00FF000000000000) >> 48; dst->data[(*pos)++] = (*src & 0xFF00000000000000) >> 56; UA_TYPE_END_XXCODEBINARY UA_TYPE_START_DECODEBINARY(UA_Int64) *dst = (UA_Int64) src->data[(*pos)++] << 0; *dst |= (UA_Int64) src->data[(*pos)++] << 8; *dst |= (UA_Int64) src->data[(*pos)++] << 16; *dst |= (UA_Int64) src->data[(*pos)++] << 24; *dst |= (UA_Int64) src->data[(*pos)++] << 32; *dst |= (UA_Int64) src->data[(*pos)++] << 40; *dst |= (UA_Int64) src->data[(*pos)++] << 48; *dst |= (UA_Int64) src->data[(*pos)++] << 56; UA_TYPE_END_XXCODEBINARY UA_TYPE_METHOD_DELETE_FREE(UA_Int64) UA_TYPE_METHOD_DELETEMEMBERS_NOACTION(UA_Int64) UA_TYPE_METHOD_INIT_DEFAULT(UA_Int64) UA_TYPE_METHOD_NEW_DEFAULT(UA_Int64) UA_TYPE_METHOD_COPY(UA_Int64) /** UA_UInt64 - unsigned integer, 8 bytes */ UA_TYPE_METHOD_CALCSIZE_SIZEOF(UA_UInt64) UA_TYPE_START_ENCODEBINARY(UA_UInt64) return UA_Int64_encodeBinary((UA_Int64 const *)src,pos,dst); UA_TYPE_END_XXCODEBINARY UA_TYPE_START_DECODEBINARY(UA_UInt64) UA_UInt64 t1 = (UA_UInt64) src->data[(*pos)++]; UA_UInt64 t2 = (UA_UInt64) src->data[(*pos)++] << 8; UA_UInt64 t3 = (UA_UInt64) src->data[(*pos)++] << 16; UA_UInt64 t4 = (UA_UInt64) src->data[(*pos)++] << 24; UA_UInt64 t5 = (UA_UInt64) src->data[(*pos)++] << 32; UA_UInt64 t6 = (UA_UInt64) src->data[(*pos)++] << 40; UA_UInt64 t7 = (UA_UInt64) src->data[(*pos)++] << 48; UA_UInt64 t8 = (UA_UInt64) src->data[(*pos)++] << 56; *dst = t1 + t2 + t3 + t4 + t5 + t6 + t7 + t8; UA_TYPE_END_XXCODEBINARY UA_TYPE_METHOD_DELETE_FREE(UA_UInt64) UA_TYPE_METHOD_DELETEMEMBERS_NOACTION(UA_UInt64) UA_TYPE_METHOD_INIT_DEFAULT(UA_UInt64) UA_TYPE_METHOD_NEW_DEFAULT(UA_UInt64) UA_TYPE_METHOD_COPY(UA_UInt64) /** UA_Float - IEE754 32bit float with biased exponent */ UA_TYPE_METHOD_CALCSIZE_SIZEOF(UA_Float) // FIXME: Implement NaN, Inf and Zero(s) UA_Byte UA_FLOAT_ZERO[] = {0x00,0x00,0x00,0x00}; UA_TYPE_START_DECODEBINARY(UA_Float) if (memcmp(&(src->data[*pos]),UA_FLOAT_ZERO,4)==0) { return UA_Int32_decodeBinary(src,pos,(UA_Int32*)dst); } UA_Float mantissa; mantissa = (UA_Float) (src->data[*pos] & 0xFF); // bits 0-7 mantissa = (mantissa / 256.0 ) + (UA_Float) (src->data[*pos+1] & 0xFF); // bits 8-15 mantissa = (mantissa / 256.0 ) + (UA_Float) (src->data[*pos+2] & 0x7F); // bits 16-22 UA_UInt32 biasedExponent ; biasedExponent = (src->data[*pos+2] & 0x80) >> 7; // bits 23 biasedExponent |= (src->data[*pos+3] & 0x7F) << 1; // bits 24-30 UA_Float sign = ( src->data[*pos + 3] & 0x80 ) ? -1.0 : 1.0; // bit 31 if (biasedExponent >= 127) { *dst = (UA_Float) sign * (1 << (biasedExponent-127)) * (1.0 + mantissa / 128.0 ); } else { *dst = (UA_Float) sign * 2.0 * (1.0 + mantissa / 128.0 ) / ((UA_Float) (biasedExponent-127)); } *pos += 4; UA_TYPE_END_XXCODEBINARY #ifdef __pdp11 #error FIXME UA_Float_encodeBinary is not yet completely byte order agnostic #endif UA_TYPE_START_ENCODEBINARY(UA_Float) return UA_UInt32_encodeBinary((UA_UInt32*)src,pos,dst); UA_TYPE_END_XXCODEBINARY UA_TYPE_METHOD_DELETE_FREE(UA_Float) UA_TYPE_METHOD_DELETEMEMBERS_NOACTION(UA_Float) UA_Int32 UA_Float_init(UA_Float * p){ if(p==UA_NULL)return UA_ERROR; *p = (UA_Float)0.0; return UA_SUCCESS; } UA_TYPE_METHOD_NEW_DEFAULT(UA_Float) UA_TYPE_METHOD_COPY(UA_Float) /** UA_Float - IEEE754 64bit float with biased exponent*/ UA_TYPE_METHOD_CALCSIZE_SIZEOF(UA_Double) // FIXME: Implement NaN, Inf and Zero(s) UA_Byte UA_DOUBLE_ZERO[] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; UA_TYPE_START_DECODEBINARY(UA_Double) if (memcmp(&(src->data[*pos]),UA_DOUBLE_ZERO,8)==0) { return UA_Int64_decodeBinary(src,pos,(UA_Int64*)dst); } UA_Double mantissa; mantissa = (UA_Double) (src->data[*pos] & 0xFF); // bits 0-7 mantissa = (mantissa / 256.0 ) + (UA_Double) (src->data[*pos+1] & 0xFF); // bits 8-15 mantissa = (mantissa / 256.0 ) + (UA_Double) (src->data[*pos+2] & 0xFF); // bits 16-23 mantissa = (mantissa / 256.0 ) + (UA_Double) (src->data[*pos+3] & 0xFF); // bits 24-31 mantissa = (mantissa / 256.0 ) + (UA_Double) (src->data[*pos+4] & 0xFF); // bits 32-39 mantissa = (mantissa / 256.0 ) + (UA_Double) (src->data[*pos+5] & 0xFF); // bits 40-47 mantissa = (mantissa / 256.0 ) + (UA_Double) (src->data[*pos+6] & 0x0F); // bits 48-51 DBG_VERBOSE(printf("UA_Double_decodeBinary - mantissa=%f\n", mantissa)); UA_UInt32 biasedExponent ; biasedExponent = (src->data[*pos+6] & 0xF0) >> 4; // bits 52-55 DBG_VERBOSE(printf("UA_Double_decodeBinary - biasedExponent52-55=%d, src=%d\n", biasedExponent,src->data[*pos+6])); biasedExponent |= ((UA_UInt32) (src->data[*pos+7] & 0x7F)) << 4; // bits 56-62 DBG_VERBOSE(printf("UA_Double_decodeBinary - biasedExponent56-62=%d, src=%d\n", biasedExponent,src->data[*pos+7])); UA_Double sign = ( src->data[*pos+7] & 0x80 ) ? -1.0 : 1.0; // bit 63 if (biasedExponent >= 1023) { *dst = (UA_Double) sign * (1 << (biasedExponent-1023)) * (1.0 + mantissa / 8.0 ); } else { *dst = (UA_Double) sign * 2.0 * (1.0 + mantissa / 8.0 ) / ((UA_Double) (biasedExponent-1023)); } *pos += 8; UA_TYPE_END_XXCODEBINARY #ifdef __pdp11 #error FIXME UA_Float_decodeBinary is not yet completely byte order agnostic #endif UA_TYPE_START_ENCODEBINARY(UA_Double) return UA_UInt64_encodeBinary((UA_UInt64*)src,pos,dst); UA_TYPE_END_XXCODEBINARY UA_TYPE_METHOD_DELETE_FREE(UA_Double) UA_TYPE_METHOD_DELETEMEMBERS_NOACTION(UA_Double) UA_TYPE_METHOD_INIT_DEFAULT(UA_Double) UA_TYPE_METHOD_NEW_DEFAULT(UA_Double) UA_TYPE_METHOD_COPY(UA_Double) /** UA_String */ UA_Int32 UA_String_calcSize(UA_String const * string) { if (string == UA_NULL) { // internal size for UA_memalloc return sizeof(UA_String); } else { // binary encoding size if (string->length > 0) { return sizeof(UA_Int32) + string->length * sizeof(UA_Byte); } else { return sizeof(UA_Int32); } } } UA_Int32 UA_String_encodeBinary(UA_String const * src, UA_Int32* pos, UA_ByteString* dst) { UA_Int32 retval = UA_SUCCESS; if (src == UA_NULL) { return UA_ERR_INVALID_VALUE; } else if (*pos < 0 || *pos + UA_String_calcSize(src) > dst->length) { return UA_ERR_INVALID_VALUE; } else { retval = UA_Int32_encodeBinary(&(src->length),pos,dst); if (src->length > 0) { retval |= UA_memcpy(&(dst->data[*pos]), src->data, src->length); *pos += src->length; } } return retval; } UA_Int32 UA_String_decodeBinary(UA_ByteString const * src, UA_Int32* pos, UA_String * dst) { UA_Int32 retval = UA_SUCCESS; UA_String_init(dst); retval |= UA_Int32_decodeBinary(src,pos,&(dst->length)); if(dst->length > (src->length - *pos)) { retval = UA_ERR_INVALID_VALUE; } if (retval != UA_SUCCESS || dst->length <= 0) { dst->length = -1; dst->data = UA_NULL; } else { CHECKED_DECODE(UA_alloc((void**)&(dst->data),dst->length), dst->length = -1); CHECKED_DECODE(UA_memcpy(dst->data,&(src->data[*pos]),dst->length), UA_free(dst->data); dst->data = UA_NULL; dst->length = -1); *pos += dst->length; } return retval; } UA_TYPE_METHOD_NEW_DEFAULT(UA_String) UA_TYPE_METHOD_DELETE_STRUCT(UA_String) UA_Int32 UA_String_deleteMembers(UA_String* p) { UA_Int32 retval = UA_SUCCESS; if(p->data != UA_NULL) { retval |= UA_free(p->data); p->data = UA_NULL; p->length = -1; } return retval; } UA_Int32 UA_String_copy(UA_String const * src, UA_String* dst) { UA_Int32 retval = UA_SUCCESS; dst->data = UA_NULL; dst->length = -1; if (src->length > 0) { retval |= UA_alloc((void**)&(dst->data), src->length); if (retval == UA_SUCCESS) { retval |= UA_memcpy((void*)dst->data, src->data, src->length); dst->length = src->length; } } return retval; } UA_Int32 UA_String_copycstring(char const * src, UA_String* dst) { UA_Int32 retval = UA_SUCCESS; dst->length = strlen(src); dst->data = UA_NULL; if (dst->length > 0) { retval |= UA_alloc((void**)&(dst->data), dst->length); if (retval == UA_SUCCESS) { retval |= UA_memcpy((void*)dst->data, src, dst->length); } } return retval; } #define UA_STRING_COPYPRINTF_BUFSIZE 1024 UA_Int32 UA_String_copyprintf(char const * fmt, UA_String* dst, ...) { UA_Int32 retval = UA_SUCCESS; char src[UA_STRING_COPYPRINTF_BUFSIZE]; UA_Int32 len; va_list ap; va_start(ap, dst); len = vsnprintf(src,UA_STRING_COPYPRINTF_BUFSIZE,fmt,ap); va_end(ap); if (len < 0) { // FIXME: old glibc 2.0 would return -1 when truncated dst->length = 0; dst->data = UA_NULL; retval = UA_ERR_INVALID_VALUE; } else { // since glibc 2.1 vsnprintf returns len that would have resulted if buf were large enough dst->length = ( len > UA_STRING_COPYPRINTF_BUFSIZE ? UA_STRING_COPYPRINTF_BUFSIZE : len ); retval |= UA_alloc((void**)&(dst->data), dst->length); if (retval == UA_SUCCESS) { retval |= UA_memcpy((void*)dst->data, src, dst->length); } } return retval; } UA_String UA_String_null = { -1, UA_NULL }; UA_Int32 UA_String_init(UA_String* p){ if(p==UA_NULL)return UA_ERROR; p->length = -1; p->data = UA_NULL; return UA_SUCCESS; } UA_Int32 UA_String_compare(const UA_String* string1, const UA_String* string2) { UA_Int32 retval; if (string1->length == 0 && string2->length == 0) { retval = UA_EQUAL; } else if (string1->length == -1 && string2->length == -1) { retval = UA_EQUAL; } else if (string1->length != string2->length) { retval = UA_NOT_EQUAL; } else { // casts are needed to overcome signed warnings UA_Int32 is = strncmp((char const*)string1->data,(char const*)string2->data,string1->length); retval = (is == 0) ? UA_EQUAL : UA_NOT_EQUAL; } return retval; } void UA_String_printf(char const * label, const UA_String* string) { printf("%s {Length=%d, Data=%.*s}\n", label, string->length, string->length, (char*)string->data); } void UA_String_printx(char const * label, const UA_String* string) { UA_Int32 i; if (string == UA_NULL) { printf("%s {NULL}\n", label); return; } printf("%s {Length=%d, Data=", label, string->length); if (string->length > 0) { for (i = 0; i < string->length; i++) { printf("%c%d", i == 0 ? '{' : ',', (string->data)[i]); // if (i > 0 && !(i%20)) { printf("\n\t"); } } } else { printf("{"); } printf("}}\n"); } void UA_String_printx_hex(char const * label, const UA_String* string) { UA_Int32 i; printf("%s {Length=%d, Data=", label, string->length); if (string->length > 0) { for (i = 0; i < string->length; i++) { printf("%c%x", i == 0 ? '{' : ',', (string->data)[i]); } } else { printf("{"); } printf("}}\n"); } // TODO: should we really want to handle UA_String and UA_ByteString the same way? UA_TYPE_METHOD_PROTOTYPES_AS(UA_ByteString, UA_String) UA_TYPE_METHOD_NEW_DEFAULT(UA_ByteString) UA_Int32 UA_ByteString_compare(const UA_ByteString *string1, const UA_ByteString *string2) { return UA_String_compare((const UA_String*) string1, (const UA_String*) string2); } void UA_ByteString_printf(char* label, const UA_ByteString* string) { UA_String_printf(label, (UA_String*) string); } void UA_ByteString_printx(char* label, const UA_ByteString* string) { UA_String_printx(label, (UA_String*) string); } void UA_ByteString_printx_hex(char* label, const UA_ByteString* string) { UA_String_printx_hex(label, (UA_String*) string); } UA_Byte UA_Byte_securityPoliceNoneData[] = "http://opcfoundation.org/UA/SecurityPolicy#None"; // sizeof()-1 : discard the implicit null-terminator of the c-char-string UA_ByteString UA_ByteString_securityPoliceNone = { sizeof(UA_Byte_securityPoliceNoneData)-1, UA_Byte_securityPoliceNoneData }; UA_Int32 UA_ByteString_newMembers(UA_ByteString* p, UA_Int32 length) { UA_Int32 retval = UA_SUCCESS; if ((retval |= UA_alloc((void**)&(p->data),length)) == UA_SUCCESS) { p->length = length; } else { p->length = length; p->data = UA_NULL; } return retval; } UA_Int32 UA_Guid_calcSize(UA_Guid const * p) { if (p == UA_NULL) { return sizeof(UA_Guid); } else { return 16; } } UA_TYPE_START_ENCODEBINARY(UA_Guid) UA_Int32 i=0; retval |= UA_UInt32_encodeBinary(&(src->data1), pos, dst); retval |= UA_UInt16_encodeBinary(&(src->data2), pos, dst); retval |= UA_UInt16_encodeBinary(&(src->data3), pos, dst); for (i=0;i<8;i++) { retval |= UA_Byte_encodeBinary(&(src->data4[i]), pos, dst); } UA_TYPE_END_XXCODEBINARY UA_Int32 UA_Guid_decodeBinary(UA_ByteString const * src, UA_Int32* pos, UA_Guid *dst) { UA_Int32 retval = UA_SUCCESS; UA_Int32 i=0; // TODO: This could be done with a single memcpy (if the compiler does no fancy realigning of structs) CHECKED_DECODE(UA_UInt32_decodeBinary(src,pos,&dst->data1), ;); CHECKED_DECODE(UA_UInt16_decodeBinary(src,pos,&dst->data2), ;); CHECKED_DECODE(UA_UInt16_decodeBinary(src,pos,&dst->data3), ;); for (i=0;i<8;i++) { CHECKED_DECODE(UA_Byte_decodeBinary(src,pos,&dst->data4[i]), ;); } return retval; } UA_TYPE_METHOD_DELETE_STRUCT(UA_Guid) UA_Int32 UA_Guid_deleteMembers(UA_Guid* p) { return UA_SUCCESS; } UA_Int32 UA_Guid_compare(const UA_Guid *g1, const UA_Guid *g2) { return memcmp(g1, g2, sizeof(UA_Guid)); } UA_Int32 UA_Guid_init(UA_Guid* p){ if(p==UA_NULL)return UA_ERROR; p->data1 = 0; p->data2 = 0; p->data3 = 0; memset(p->data4,8,sizeof(UA_Byte)); return UA_SUCCESS; } UA_TYPE_METHOD_NEW_DEFAULT(UA_Guid) UA_Int32 UA_Guid_copy(UA_Guid const *src, UA_Guid *dst) { UA_Int32 retval = UA_SUCCESS; retval |= UA_alloc((void**)&dst,UA_Guid_calcSize(UA_NULL)); retval |= UA_memcpy((void*)dst,(void*)src,UA_Guid_calcSize(UA_NULL)); return retval; } UA_Int32 UA_LocalizedText_calcSize(UA_LocalizedText const * p) { UA_Int32 length = 0; if (p==UA_NULL) { // size for UA_memalloc length = sizeof(UA_LocalizedText); } else { // size for binary encoding length += 1; // p->encodingMask; if (p->encodingMask & UA_LOCALIZEDTEXT_ENCODINGMASKTYPE_LOCALE) { length += UA_String_calcSize(&(p->locale)); } if (p->encodingMask & UA_LOCALIZEDTEXT_ENCODINGMASKTYPE_TEXT) { length += UA_String_calcSize(&(p->text)); } } return length; } UA_TYPE_START_ENCODEBINARY(UA_LocalizedText) retval |= UA_Byte_encodeBinary(&(src->encodingMask),pos,dst); if (src->encodingMask & UA_LOCALIZEDTEXT_ENCODINGMASKTYPE_LOCALE) { retval |= UA_String_encodeBinary(&(src->locale),pos,dst); } if (src->encodingMask & UA_LOCALIZEDTEXT_ENCODINGMASKTYPE_TEXT) { retval |= UA_String_encodeBinary(&(src->text),pos,dst); } UA_TYPE_END_XXCODEBINARY UA_Int32 UA_LocalizedText_decodeBinary(UA_ByteString const * src, UA_Int32 *pos, UA_LocalizedText *dst) { UA_Int32 retval = UA_SUCCESS; retval |= UA_String_init(&dst->locale); retval |= UA_String_init(&dst->text); CHECKED_DECODE(UA_Byte_decodeBinary(src,pos,&dst->encodingMask), ;); if (dst->encodingMask & UA_LOCALIZEDTEXT_ENCODINGMASKTYPE_LOCALE) { CHECKED_DECODE(UA_String_decodeBinary(src,pos,&dst->locale), UA_LocalizedText_deleteMembers(dst)); } if (dst->encodingMask & UA_LOCALIZEDTEXT_ENCODINGMASKTYPE_TEXT) { CHECKED_DECODE(UA_String_decodeBinary(src,pos,&dst->text), UA_LocalizedText_deleteMembers(dst)); } return retval; } UA_TYPE_METHOD_DELETE_STRUCT(UA_LocalizedText) UA_Int32 UA_LocalizedText_deleteMembers(UA_LocalizedText* p) { return UA_SUCCESS | UA_String_deleteMembers(&p->locale) | UA_String_deleteMembers(&p->text); } UA_Int32 UA_LocalizedText_init(UA_LocalizedText* p){ if(p==UA_NULL) return UA_ERROR; p->encodingMask = 0; UA_String_init(&(p->locale)); UA_String_init(&(p->text)); return UA_SUCCESS; } UA_TYPE_METHOD_NEW_DEFAULT(UA_LocalizedText) UA_Int32 UA_LocalizedText_copycstring(char const * src, UA_LocalizedText* dst) { UA_Int32 retval = UA_SUCCESS; if(dst==UA_NULL) return UA_ERROR; dst->encodingMask = UA_LOCALIZEDTEXT_ENCODINGMASKTYPE_LOCALE | UA_LOCALIZEDTEXT_ENCODINGMASKTYPE_TEXT; retval |= UA_String_copycstring("EN",&(dst->locale)); retval |= UA_String_copycstring(src,&(dst->text)); return retval; } UA_Int32 UA_LocalizedText_copy(UA_LocalizedText const *src, UA_LocalizedText* dst) { UA_Int32 retval = UA_SUCCESS; retval |= UA_alloc((void**)dst,UA_LocalizedText_calcSize(UA_NULL)); retval |= UA_Byte_copy(&(src->encodingMask), &(dst->encodingMask)); retval |= UA_String_copy(&(src->locale), &(dst->locale)); retval |= UA_String_copy(&(src->text), &(dst->text)); return retval; } /* Serialization of UA_NodeID is specified in 62541-6, §5.2.2.9 */ UA_Int32 UA_NodeId_calcSize(UA_NodeId const *p) { UA_Int32 length = 0; if (p == UA_NULL) { length = sizeof(UA_NodeId); } else { switch (p->encodingByte & UA_NODEIDTYPE_MASK) { case UA_NODEIDTYPE_TWOBYTE: length = 2; break; case UA_NODEIDTYPE_FOURBYTE: length = 4; break; case UA_NODEIDTYPE_NUMERIC: length += sizeof(UA_Byte) + sizeof(UA_UInt16) + sizeof(UA_UInt32); break; case UA_NODEIDTYPE_STRING: length += sizeof(UA_Byte) + sizeof(UA_UInt16) + UA_String_calcSize(&(p->identifier.string)); break; case UA_NODEIDTYPE_GUID: length += sizeof(UA_Byte) + sizeof(UA_UInt16) + UA_Guid_calcSize(&(p->identifier.guid)); break; case UA_NODEIDTYPE_BYTESTRING: length += sizeof(UA_Byte) + sizeof(UA_UInt16) + UA_ByteString_calcSize(&(p->identifier.byteString)); break; default: break; } } return length; } UA_TYPE_START_ENCODEBINARY(UA_NodeId) // temporary variables for endian-save code UA_Byte srcByte; UA_UInt16 srcUInt16; UA_Int32 retval = UA_SUCCESS; retval |= UA_Byte_encodeBinary(&(src->encodingByte),pos,dst); switch (src->encodingByte & UA_NODEIDTYPE_MASK) { case UA_NODEIDTYPE_TWOBYTE: srcByte = src->identifier.numeric; retval |= UA_Byte_encodeBinary(&srcByte,pos,dst); break; case UA_NODEIDTYPE_FOURBYTE: srcByte = src->namespace; srcUInt16 = src->identifier.numeric; retval |= UA_Byte_encodeBinary(&srcByte,pos,dst); retval |= UA_UInt16_encodeBinary(&srcUInt16,pos,dst); break; case UA_NODEIDTYPE_NUMERIC: retval |= UA_UInt16_encodeBinary(&(src->namespace), pos, dst); retval |= UA_UInt32_encodeBinary(&(src->identifier.numeric), pos, dst); break; case UA_NODEIDTYPE_STRING: retval |= UA_UInt16_encodeBinary(&(src->namespace), pos, dst); retval |= UA_String_encodeBinary(&(src->identifier.string), pos, dst); break; case UA_NODEIDTYPE_GUID: retval |= UA_UInt16_encodeBinary(&(src->namespace), pos, dst); retval |= UA_Guid_encodeBinary(&(src->identifier.guid), pos, dst); break; case UA_NODEIDTYPE_BYTESTRING: retval |= UA_UInt16_encodeBinary(&(src->namespace), pos, dst); retval |= UA_ByteString_encodeBinary(&(src->identifier.byteString), pos, dst); break; } UA_TYPE_END_XXCODEBINARY UA_Int32 UA_NodeId_decodeBinary(UA_ByteString const * src, UA_Int32* pos, UA_NodeId *dst) { UA_Int32 retval = UA_SUCCESS; UA_NodeId_init(dst); // temporary variables to overcome decoder's non-endian-saveness for datatypes with different length UA_Byte dstByte = 0; UA_UInt16 dstUInt16 = 0; CHECKED_DECODE(UA_Byte_decodeBinary(src,pos,&(dst->encodingByte)), ;); switch (dst->encodingByte & UA_NODEIDTYPE_MASK) { case UA_NODEIDTYPE_TWOBYTE: // Table 7 CHECKED_DECODE(UA_Byte_decodeBinary(src, pos, &dstByte), ;); dst->identifier.numeric = dstByte; dst->namespace = 0; // default namespace break; case UA_NODEIDTYPE_FOURBYTE: // Table 8 CHECKED_DECODE(UA_Byte_decodeBinary(src, pos, &dstByte), ;); dst->namespace= dstByte; CHECKED_DECODE(UA_UInt16_decodeBinary(src, pos, &dstUInt16), ;); dst->identifier.numeric = dstUInt16; break; case UA_NODEIDTYPE_NUMERIC: // Table 6, first entry CHECKED_DECODE(UA_UInt16_decodeBinary(src,pos,&(dst->namespace)), ;); CHECKED_DECODE(UA_UInt32_decodeBinary(src,pos,&(dst->identifier.numeric)), ;); break; case UA_NODEIDTYPE_STRING: // Table 6, second entry CHECKED_DECODE(UA_UInt16_decodeBinary(src,pos,&(dst->namespace)), ;); CHECKED_DECODE(UA_String_decodeBinary(src,pos,&(dst->identifier.string)), ;); break; case UA_NODEIDTYPE_GUID: // Table 6, third entry CHECKED_DECODE(UA_UInt16_decodeBinary(src,pos,&(dst->namespace)), ;); CHECKED_DECODE(UA_Guid_decodeBinary(src,pos,&(dst->identifier.guid)), ;); break; case UA_NODEIDTYPE_BYTESTRING: // Table 6, "OPAQUE" CHECKED_DECODE(UA_UInt16_decodeBinary(src,pos,&(dst->namespace)), ;); CHECKED_DECODE(UA_ByteString_decodeBinary(src,pos,&(dst->identifier.byteString)), ;); break; } return retval; } UA_TYPE_METHOD_DELETE_STRUCT(UA_NodeId) UA_Int32 UA_NodeId_deleteMembers(UA_NodeId* p) { UA_Int32 retval = UA_SUCCESS; switch (p->encodingByte & UA_NODEIDTYPE_MASK) { case UA_NODEIDTYPE_TWOBYTE: case UA_NODEIDTYPE_FOURBYTE: case UA_NODEIDTYPE_NUMERIC: // nothing to do break; case UA_NODEIDTYPE_STRING: // Table 6, second entry retval |= UA_String_deleteMembers(&p->identifier.string); break; case UA_NODEIDTYPE_GUID: // Table 6, third entry retval |= UA_Guid_deleteMembers(&p->identifier.guid); break; case UA_NODEIDTYPE_BYTESTRING: // Table 6, "OPAQUE" retval |= UA_ByteString_deleteMembers(&p->identifier.byteString); break; } return retval; } void UA_NodeId_printf(char* label, const UA_NodeId* node) { UA_Int32 l; printf("%s {encodingByte=%d, namespace=%d,", label, (int)( node->encodingByte), (int) (node->namespace)); switch (node->encodingByte & UA_NODEIDTYPE_MASK) { case UA_NODEIDTYPE_TWOBYTE: case UA_NODEIDTYPE_FOURBYTE: case UA_NODEIDTYPE_NUMERIC: printf("identifier=%d\n", node->identifier.numeric); break; case UA_NODEIDTYPE_STRING: l = ( node->identifier.string.length < 0 ) ? 0 : node->identifier.string.length; printf("identifier={length=%d, data=%.*s}", node->identifier.string.length, l, (char*) (node->identifier.string.data)); break; case UA_NODEIDTYPE_BYTESTRING: l = ( node->identifier.byteString.length < 0 ) ? 0 : node->identifier.byteString.length; printf("identifier={Length=%d, data=%.*s}", node->identifier.byteString.length, l, (char*) (node->identifier.byteString.data)); break; case UA_NODEIDTYPE_GUID: printf( "guid={data1=%d, data2=%d, data3=%d, data4={length=%d, data=%.*s}}", node->identifier.guid.data1, node->identifier.guid.data2, node->identifier.guid.data3, 8, 8, (char*) (node->identifier.guid.data4)); break; default: printf("ups! shit happens"); break; } printf("}\n"); } UA_Int32 UA_NodeId_compare(const UA_NodeId *n1, const UA_NodeId *n2) { if (n1 == UA_NULL || n2 == UA_NULL || n1->encodingByte != n2->encodingByte || n1->namespace != n2->namespace) return FALSE; switch (n1->encodingByte & UA_NODEIDTYPE_MASK) { case UA_NODEIDTYPE_TWOBYTE: case UA_NODEIDTYPE_FOURBYTE: case UA_NODEIDTYPE_NUMERIC: if(n1->identifier.numeric == n2->identifier.numeric) return UA_EQUAL; else return UA_NOT_EQUAL; case UA_NODEIDTYPE_STRING: return UA_String_compare(&(n1->identifier.string), &(n2->identifier.string)); case UA_NODEIDTYPE_GUID: return UA_Guid_compare(&(n1->identifier.guid), &(n2->identifier.guid)); case UA_NODEIDTYPE_BYTESTRING: return UA_ByteString_compare(&(n1->identifier.byteString), &(n2->identifier.byteString)); } return UA_NOT_EQUAL; } UA_Int32 UA_NodeId_init(UA_NodeId* p){ if(p==UA_NULL)return UA_ERROR; p->encodingByte = UA_NODEIDTYPE_TWOBYTE; p->namespace = 0; memset(&(p->identifier),0,sizeof(p->identifier)); return UA_SUCCESS; } UA_TYPE_METHOD_NEW_DEFAULT(UA_NodeId) UA_Int32 UA_NodeId_copy(UA_NodeId const *src, UA_NodeId *dst) { UA_Int32 retval = UA_SUCCESS; retval |= UA_Byte_copy(&(src->encodingByte), &(dst->encodingByte)); switch (src->encodingByte & UA_NODEIDTYPE_MASK) { case UA_NODEIDTYPE_TWOBYTE: case UA_NODEIDTYPE_FOURBYTE: case UA_NODEIDTYPE_NUMERIC: // nothing to do retval |= UA_UInt16_copy(&(src->namespace),&(dst->namespace)); retval |= UA_UInt32_copy(&(src->identifier.numeric),&(dst->identifier.numeric)); break; case UA_NODEIDTYPE_STRING: // Table 6, second entry retval |= UA_String_copy(&(src->identifier.string),&(dst->identifier.string)); break; case UA_NODEIDTYPE_GUID: // Table 6, third entry retval |= UA_Guid_copy(&(src->identifier.guid),&(dst->identifier.guid)); break; case UA_NODEIDTYPE_BYTESTRING: // Table 6, "OPAQUE" retval |= UA_ByteString_copy(&(src->identifier.byteString),&(dst->identifier.byteString)); break; } return retval; } UA_Int32 UA_ExpandedNodeId_calcSize(UA_ExpandedNodeId const * p) { UA_Int32 length = 0; if (p == UA_NULL) { length = sizeof(UA_ExpandedNodeId); } else { length = UA_NodeId_calcSize(&(p->nodeId)); if (p->nodeId.encodingByte & UA_NODEIDTYPE_NAMESPACE_URI_FLAG) { length += UA_String_calcSize(&(p->namespaceUri)); //p->namespaceUri } if (p->nodeId.encodingByte & UA_NODEIDTYPE_SERVERINDEX_FLAG) { length += sizeof(UA_UInt32); //p->serverIndex } } return length; } UA_TYPE_START_ENCODEBINARY(UA_ExpandedNodeId) retval |= UA_NodeId_encodeBinary(&(src->nodeId),pos,dst); if (src->nodeId.encodingByte & UA_NODEIDTYPE_NAMESPACE_URI_FLAG) { retval |= UA_String_encodeBinary(&(src->namespaceUri),pos,dst); } if (src->nodeId.encodingByte & UA_NODEIDTYPE_SERVERINDEX_FLAG) { retval |= UA_UInt32_encodeBinary(&(src->serverIndex),pos,dst); } UA_TYPE_END_XXCODEBINARY UA_Int32 UA_ExpandedNodeId_decodeBinary(UA_ByteString const * src, UA_Int32* pos, UA_ExpandedNodeId *dst) { UA_UInt32 retval = UA_SUCCESS; UA_ExpandedNodeId_init(dst); CHECKED_DECODE(UA_NodeId_decodeBinary(src,pos,&dst->nodeId), UA_ExpandedNodeId_deleteMembers(dst)); if (dst->nodeId.encodingByte & UA_NODEIDTYPE_NAMESPACE_URI_FLAG) { dst->nodeId.namespace = 0; CHECKED_DECODE(UA_String_decodeBinary(src,pos,&dst->namespaceUri), UA_ExpandedNodeId_deleteMembers(dst)); } else { CHECKED_DECODE(UA_String_copy(&UA_String_null, &dst->namespaceUri), UA_ExpandedNodeId_deleteMembers(dst)); } if (dst->nodeId.encodingByte & UA_NODEIDTYPE_SERVERINDEX_FLAG) { CHECKED_DECODE(UA_UInt32_decodeBinary(src,pos,&(dst->serverIndex)), UA_ExpandedNodeId_deleteMembers(dst)); } return retval; } UA_TYPE_METHOD_DELETE_STRUCT(UA_ExpandedNodeId) UA_Int32 UA_ExpandedNodeId_deleteMembers(UA_ExpandedNodeId* p) { UA_Int32 retval = UA_SUCCESS; retval |= UA_NodeId_deleteMembers(&(p->nodeId)); retval |= UA_String_deleteMembers(&(p->namespaceUri)); return retval; } UA_Int32 UA_ExpandedNodeId_init(UA_ExpandedNodeId* p){ if(p==UA_NULL)return UA_ERROR; UA_NodeId_init(&(p->nodeId)); UA_String_init(&(p->namespaceUri)); p->serverIndex = 0; return UA_SUCCESS; } UA_TYPE_METHOD_NEW_DEFAULT(UA_ExpandedNodeId) UA_Int32 UA_ExpandedNodeId_copy(UA_ExpandedNodeId const *src, UA_ExpandedNodeId *dst) { UA_Int32 retval = UA_SUCCESS; UA_String_copy(&(src->namespaceUri), &(dst->namespaceUri)); UA_NodeId_copy(&(src->nodeId), &(dst->nodeId)); UA_UInt32_copy(&(src->serverIndex), &(dst->serverIndex)); return retval; } UA_Int32 UA_ExtensionObject_calcSize(UA_ExtensionObject const * p) { UA_Int32 length = 0; if (p == UA_NULL) { length = sizeof(UA_ExtensionObject); } else { length += UA_NodeId_calcSize(&(p->typeId)); length += 1; //p->encoding switch (p->encoding) { case UA_EXTENSIONOBJECT_ENCODINGMASK_BODYISBYTESTRING: length += UA_ByteString_calcSize(&(p->body)); break; case UA_EXTENSIONOBJECT_ENCODINGMASK_BODYISXML: length += UA_XmlElement_calcSize((UA_XmlElement*)&(p->body)); break; } } return length; } UA_TYPE_START_ENCODEBINARY(UA_ExtensionObject) retval |= UA_NodeId_encodeBinary(&(src->typeId),pos,dst); retval |= UA_Byte_encodeBinary(&(src->encoding),pos,dst); switch (src->encoding) { case UA_EXTENSIONOBJECT_ENCODINGMASK_NOBODYISENCODED: break; case UA_EXTENSIONOBJECT_ENCODINGMASK_BODYISBYTESTRING: case UA_EXTENSIONOBJECT_ENCODINGMASK_BODYISXML: retval |= UA_ByteString_encodeBinary(&(src->body),pos,dst); break; } UA_TYPE_END_XXCODEBINARY UA_Int32 UA_ExtensionObject_decodeBinary(UA_ByteString const * src, UA_Int32 *pos, UA_ExtensionObject *dst) { UA_Int32 retval = UA_SUCCESS; UA_ExtensionObject_init(dst); CHECKED_DECODE(UA_NodeId_decodeBinary(src,pos,&(dst->typeId)), UA_ExtensionObject_deleteMembers(dst)); CHECKED_DECODE(UA_Byte_decodeBinary(src,pos,&(dst->encoding)), UA_ExtensionObject_deleteMembers(dst)); CHECKED_DECODE(UA_String_copy(&UA_String_null, (UA_String*) &(dst->body)), UA_ExtensionObject_deleteMembers(dst)); switch (dst->encoding) { case UA_EXTENSIONOBJECT_ENCODINGMASK_NOBODYISENCODED: break; case UA_EXTENSIONOBJECT_ENCODINGMASK_BODYISBYTESTRING: case UA_EXTENSIONOBJECT_ENCODINGMASK_BODYISXML: CHECKED_DECODE(UA_ByteString_decodeBinary(src,pos,&(dst->body)), UA_ExtensionObject_deleteMembers(dst)); break; } return retval; } UA_TYPE_METHOD_DELETE_STRUCT(UA_ExtensionObject) UA_Int32 UA_ExtensionObject_deleteMembers(UA_ExtensionObject *p) { UA_Int32 retval = UA_SUCCESS; retval |= UA_NodeId_deleteMembers(&(p->typeId)); retval |= UA_ByteString_deleteMembers(&(p->body)); return retval; } UA_Int32 UA_ExtensionObject_init(UA_ExtensionObject* p){ if(p==UA_NULL)return UA_ERROR; UA_ByteString_init(&(p->body)); p->encoding = 0; UA_NodeId_init(&(p->typeId)); return UA_SUCCESS; } UA_TYPE_METHOD_NEW_DEFAULT(UA_ExtensionObject) UA_Int32 UA_ExtensionObject_copy(UA_ExtensionObject const *src, UA_ExtensionObject *dst) { UA_Int32 retval = UA_SUCCESS; retval |= UA_ExtensionObject_calcSize(UA_NULL); retval |= UA_Byte_copy(&(src->encoding),&(dst->encoding)); retval |= UA_ByteString_copy(&(src->body),&(dst->body)); retval |= UA_NodeId_copy(&(src->typeId),&(dst->typeId)); return retval; } /** DiagnosticInfo - Part: 4, Chapter: 7.9, Page: 116 */ UA_Int32 UA_DiagnosticInfo_calcSize(UA_DiagnosticInfo const * ptr) { UA_Int32 length = 0; if (ptr == UA_NULL) { length = sizeof(UA_DiagnosticInfo); } else { UA_Byte mask; length += sizeof(UA_Byte); // EncodingMask for (mask = 0x01; mask <= 0x40; mask *= 2) { switch (mask & (ptr->encodingMask)) { case UA_DIAGNOSTICINFO_ENCODINGMASK_SYMBOLICID: // puts("diagnosticInfo symbolic id"); length += sizeof(UA_Int32); break; case UA_DIAGNOSTICINFO_ENCODINGMASK_NAMESPACE: length += sizeof(UA_Int32); break; case UA_DIAGNOSTICINFO_ENCODINGMASK_LOCALIZEDTEXT: length += sizeof(UA_Int32); break; case UA_DIAGNOSTICINFO_ENCODINGMASK_LOCALE: length += sizeof(UA_Int32); break; case UA_DIAGNOSTICINFO_ENCODINGMASK_ADDITIONALINFO: length += UA_String_calcSize(&(ptr->additionalInfo)); break; case UA_DIAGNOSTICINFO_ENCODINGMASK_INNERSTATUSCODE: length += sizeof(UA_StatusCode); break; case UA_DIAGNOSTICINFO_ENCODINGMASK_INNERDIAGNOSTICINFO: length += UA_DiagnosticInfo_calcSize(ptr->innerDiagnosticInfo); break; } } } return length; } UA_Int32 UA_DiagnosticInfo_decodeBinary(UA_ByteString const * src, UA_Int32 *pos, UA_DiagnosticInfo *dst) { UA_Int32 retval = UA_SUCCESS; UA_DiagnosticInfo_init(dst); CHECKED_DECODE(UA_Byte_decodeBinary(src, pos, &(dst->encodingMask)), ;); for (UA_Int32 i = 0; i < 7; i++) { switch ( (0x01 << i) & dst->encodingMask) { case UA_DIAGNOSTICINFO_ENCODINGMASK_SYMBOLICID: CHECKED_DECODE(UA_Int32_decodeBinary(src, pos, &(dst->symbolicId)), ;); break; case UA_DIAGNOSTICINFO_ENCODINGMASK_NAMESPACE: CHECKED_DECODE(UA_Int32_decodeBinary(src, pos, &(dst->namespaceUri)), ;); break; case UA_DIAGNOSTICINFO_ENCODINGMASK_LOCALIZEDTEXT: CHECKED_DECODE(UA_Int32_decodeBinary(src, pos, &(dst->localizedText)), ;); break; case UA_DIAGNOSTICINFO_ENCODINGMASK_LOCALE: CHECKED_DECODE(UA_Int32_decodeBinary(src, pos, &(dst->locale)), ;); break; case UA_DIAGNOSTICINFO_ENCODINGMASK_ADDITIONALINFO: CHECKED_DECODE(UA_String_decodeBinary(src, pos, &(dst->additionalInfo)), ;); break; case UA_DIAGNOSTICINFO_ENCODINGMASK_INNERSTATUSCODE: CHECKED_DECODE(UA_StatusCode_decodeBinary(src, pos, &(dst->innerStatusCode)), ;); break; case UA_DIAGNOSTICINFO_ENCODINGMASK_INNERDIAGNOSTICINFO: // innerDiagnosticInfo is a pointer to struct, therefore allocate CHECKED_DECODE(UA_alloc((void **) &(dst->innerDiagnosticInfo), UA_DiagnosticInfo_calcSize(UA_NULL)), ;); CHECKED_DECODE(UA_DiagnosticInfo_decodeBinary(src, pos, dst->innerDiagnosticInfo), UA_DiagnosticInfo_deleteMembers(dst)); break; } } return retval; } UA_TYPE_START_ENCODEBINARY(UA_DiagnosticInfo) UA_Int32 i; retval |= UA_Byte_encodeBinary(&(src->encodingMask), pos, dst); for (i = 0; i < 7; i++) { switch ( (0x01 << i) & src->encodingMask) { case UA_DIAGNOSTICINFO_ENCODINGMASK_SYMBOLICID: retval |= UA_Int32_encodeBinary(&(src->symbolicId), pos, dst); break; case UA_DIAGNOSTICINFO_ENCODINGMASK_NAMESPACE: retval |= UA_Int32_encodeBinary( &(src->namespaceUri), pos, dst); break; case UA_DIAGNOSTICINFO_ENCODINGMASK_LOCALIZEDTEXT: retval |= UA_Int32_encodeBinary(&(src->localizedText), pos, dst); break; case UA_DIAGNOSTICINFO_ENCODINGMASK_LOCALE: retval |= UA_Int32_encodeBinary(&(src->locale), pos, dst); break; case UA_DIAGNOSTICINFO_ENCODINGMASK_ADDITIONALINFO: retval |= UA_String_encodeBinary(&(src->additionalInfo), pos, dst); break; case UA_DIAGNOSTICINFO_ENCODINGMASK_INNERSTATUSCODE: retval |= UA_StatusCode_encodeBinary(&(src->innerStatusCode), pos, dst); break; case UA_DIAGNOSTICINFO_ENCODINGMASK_INNERDIAGNOSTICINFO: retval |= UA_DiagnosticInfo_encodeBinary(src->innerDiagnosticInfo, pos, dst); break; } } UA_TYPE_END_XXCODEBINARY UA_TYPE_METHOD_DELETE_STRUCT(UA_DiagnosticInfo) UA_Int32 UA_DiagnosticInfo_deleteMembers(UA_DiagnosticInfo *p) { UA_Int32 retval = UA_SUCCESS; if ((p->encodingMask & UA_DIAGNOSTICINFO_ENCODINGMASK_INNERDIAGNOSTICINFO) && p->innerDiagnosticInfo != UA_NULL) { retval |= UA_DiagnosticInfo_deleteMembers(p->innerDiagnosticInfo); retval |= UA_free(p->innerDiagnosticInfo); } return retval; } UA_Int32 UA_DiagnosticInfo_init(UA_DiagnosticInfo* p){ if(p==UA_NULL)return UA_ERROR; UA_String_init(&(p->additionalInfo)); p->encodingMask = 0; p->innerDiagnosticInfo = UA_NULL; UA_StatusCode_init(&(p->innerStatusCode)); p->locale = 0; p->localizedText = 0; p->namespaceUri = 0; p->symbolicId = 0; return UA_SUCCESS; } UA_TYPE_METHOD_NEW_DEFAULT(UA_DiagnosticInfo) UA_Int32 UA_DiagnosticInfo_copy(UA_DiagnosticInfo const *src, UA_DiagnosticInfo *dst) { UA_Int32 retval = UA_SUCCESS; retval |= UA_String_copy(&(src->additionalInfo), &(dst->additionalInfo)); retval |= UA_Byte_copy(&(src->encodingMask), &(dst->encodingMask)); retval |= UA_StatusCode_copy(&(src->innerStatusCode), &(dst->innerStatusCode)); if(src->innerDiagnosticInfo){ retval |= UA_alloc((void**)&(dst->innerDiagnosticInfo),UA_DiagnosticInfo_calcSize(UA_NULL)); if(retval == UA_SUCCESS){ retval |= UA_DiagnosticInfo_copy(src->innerDiagnosticInfo, dst->innerDiagnosticInfo); } } else{ dst->innerDiagnosticInfo = UA_NULL; } retval |= UA_Int32_copy(&(src->locale), &(dst->locale)); retval |= UA_Int32_copy(&(src->localizedText), &(dst->localizedText)); retval |= UA_Int32_copy(&(src->namespaceUri), &(dst->namespaceUri)); retval |= UA_Int32_copy(&(src->symbolicId), &(dst->symbolicId)); return retval; } UA_TYPE_METHOD_PROTOTYPES_AS(UA_DateTime,UA_Int64) UA_TYPE_METHOD_NEW_DEFAULT(UA_DateTime) #include // Number of seconds from 1 Jan. 1601 00:00 to 1 Jan 1970 00:00 UTC #define FILETIME_UNIXTIME_BIAS_SEC 11644473600LL // Factors #define HUNDRED_NANOSEC_PER_USEC 10LL #define HUNDRED_NANOSEC_PER_SEC (HUNDRED_NANOSEC_PER_USEC * 1000000LL) // IEC 62541-6 §5.2.2.5 A DateTime value shall be encoded as a 64-bit signed integer // which represents the number of 100 nanosecond intervals since January 1, 1601 (UTC). UA_DateTime UA_DateTime_now() { UA_DateTime dateTime; struct timeval tv; gettimeofday(&tv, UA_NULL); dateTime = (tv.tv_sec + FILETIME_UNIXTIME_BIAS_SEC) * HUNDRED_NANOSEC_PER_SEC + tv.tv_usec * HUNDRED_NANOSEC_PER_USEC; return dateTime; } //toDo UA_DateTimeStruct UA_DateTime_toStruct(UA_DateTime time){ UA_DateTimeStruct dateTimeStruct; //calcualting the the milli-, micro- and nanoseconds UA_DateTime timeTemp; timeTemp = (time-((time/10)*10))*100; //getting the last digit -> *100 for the 100 nanaseconds resolution dateTimeStruct.nanoSec = timeTemp; //123 456 7 -> 700 nanosec; timeTemp = (time-((time/10000)*10000))/10; dateTimeStruct.microSec = timeTemp; //123 456 7 -> 456 microsec timeTemp = (time-((time/10000000)*10000000))/10000; dateTimeStruct.milliSec = timeTemp; //123 456 7 -> 123 millisec //calculating the unix time with #include time_t timeInSec = time/10000000; //converting the nanoseconds time in unixtime struct tm ts; ts = *gmtime(&timeInSec); //strftime(buf, sizeof(buf), "%a %Y-%m-%d %H:%M:%S %Z", &ts); //printf("%s\n", buf); dateTimeStruct.sec = ts.tm_sec; dateTimeStruct.min = ts.tm_min; dateTimeStruct.hour = ts.tm_hour; dateTimeStruct.day = ts.tm_mday; dateTimeStruct.mounth = ts.tm_mon+1; dateTimeStruct.year = ts.tm_year + 1900; return dateTimeStruct; } UA_Int32 UA_DateTime_toString(UA_DateTime time, UA_String* timeString){ char *charBuf = (char*)(*timeString).data; UA_DateTimeStruct tSt = UA_DateTime_toStruct(time); sprintf(charBuf, "%2d/%2d/%4d %2d:%2d:%2d.%3d.%3d.%3d", tSt.mounth, tSt.day, tSt.year, tSt.hour, tSt.min, tSt.sec, tSt.milliSec, tSt.microSec, tSt.nanoSec); return UA_SUCCESS; } UA_TYPE_METHOD_PROTOTYPES_AS(UA_XmlElement, UA_ByteString) UA_TYPE_METHOD_NEW_DEFAULT(UA_XmlElement) /** IntegerId - Part: 4, Chapter: 7.13, Page: 118 */ UA_TYPE_METHOD_PROTOTYPES_AS(UA_IntegerId, UA_Int32) UA_TYPE_METHOD_NEW_DEFAULT(UA_IntegerId) UA_TYPE_METHOD_PROTOTYPES_AS(UA_StatusCode, UA_UInt32) UA_TYPE_METHOD_NEW_DEFAULT(UA_StatusCode) /** QualifiedName - Part 4, Chapter * but see Part 6, Chapter 5.2.2.13 for Binary Encoding */ UA_Int32 UA_QualifiedName_calcSize(UA_QualifiedName const * p) { UA_Int32 length = 0; if (p == NULL) return sizeof(UA_QualifiedName); length += sizeof(UA_UInt16); //qualifiedName->namespaceIndex // length += sizeof(UA_UInt16); //qualifiedName->reserved length += UA_String_calcSize(&(p->name)); //qualifiedName->name return length; } UA_Int32 UA_QualifiedName_decodeBinary(UA_ByteString const * src, UA_Int32 *pos, UA_QualifiedName *dst) { UA_Int32 retval = UA_SUCCESS; UA_QualifiedName_init(dst); CHECKED_DECODE(UA_UInt16_decodeBinary(src,pos,&(dst->namespaceIndex)), ;); //retval |= UA_UInt16_decodeBinary(src,pos,&(dst->reserved)); CHECKED_DECODE(UA_String_decodeBinary(src,pos,&(dst->name)), ;); return retval; } UA_TYPE_START_ENCODEBINARY(UA_QualifiedName) retval |= UA_UInt16_encodeBinary(&(src->namespaceIndex),pos,dst); //retval |= UA_UInt16_encodeBinary(&(src->reserved),pos,dst); retval |= UA_String_encodeBinary(&(src->name),pos,dst); UA_TYPE_END_XXCODEBINARY UA_Int32 UA_QualifiedName_delete(UA_QualifiedName * p) { UA_Int32 retval = UA_SUCCESS; retval |= UA_QualifiedName_deleteMembers(p); retval |= UA_free(p); return retval; } UA_Int32 UA_QualifiedName_deleteMembers(UA_QualifiedName * p) { UA_Int32 retval = UA_SUCCESS; retval |= UA_String_deleteMembers(&p->name); return retval; } UA_Int32 UA_QualifiedName_init(UA_QualifiedName * p){ if(p==UA_NULL)return UA_ERROR; UA_String_init(&(p->name)); p->namespaceIndex=0; p->reserved=0; return UA_SUCCESS; } UA_TYPE_METHOD_NEW_DEFAULT(UA_QualifiedName) UA_Int32 UA_QualifiedName_copy(UA_QualifiedName const *src, UA_QualifiedName *dst) { UA_Int32 retval = UA_SUCCESS; retval |= UA_alloc((void**)&dst,UA_QualifiedName_calcSize(UA_NULL)); retval |= UA_String_copy(&(src->name),&(dst->name)); retval |= UA_UInt16_copy(&(src->namespaceIndex),&(dst->namespaceIndex)); retval |= UA_UInt16_copy(&(src->reserved),&(dst->reserved)); return retval; } UA_Int32 UA_Variant_calcSize(UA_Variant const * p) { UA_Int32 length = 0; if (p == UA_NULL) return sizeof(UA_Variant); UA_UInt32 ns0Id = p->encodingMask & 0x1F; // Bits 1-5 UA_Boolean isArray = p->encodingMask & (0x01 << 7); // Bit 7 UA_Boolean hasDimensions = p->encodingMask & (0x01 << 6); // Bit 6 UA_Int32 i; if (p->vt == UA_NULL || ns0Id != p->vt->ns0Id) { return UA_ERR_INCONSISTENT; } length += sizeof(UA_Byte); //p->encodingMask if (isArray) { // array length is encoded length += sizeof(UA_Int32); //p->arrayLength if (p->arrayLength > 0) { // TODO: add suggestions of @jfpr to not iterate over arrays with fixed len elements // FIXME: the concept of calcSize delivering the storageSize given an UA_Null argument // fails for arrays with null-ptrs, see test case // UA_Variant_calcSizeVariableSizeArrayWithNullPtrWillReturnWrongEncodingSize // Simply do not allow? for (i=0;iarrayLength;i++) { length += p->vt->calcSize(p->data[i]); } } } else { //single value to encode if (p->data == UA_NULL) { if (p->vt->ns0Id != UA_INVALIDTYPE_NS0) { length += p->vt->calcSize(UA_NULL); } else { length += 0; } } else { length += p->vt->calcSize(p->data[0]); } } if (hasDimensions) { //ToDo: tobeInsert: length += the calcSize for dimensions } return length; } UA_TYPE_START_ENCODEBINARY(UA_Variant) UA_Int32 i = 0; if (src->vt == UA_NULL || ( src->encodingMask & UA_VARIANT_ENCODINGMASKTYPE_TYPEID_MASK) != src->vt->ns0Id) { return UA_ERR_INCONSISTENT; } retval |= UA_Byte_encodeBinary(&(src->encodingMask),pos,dst); if (src->encodingMask & UA_VARIANT_ENCODINGMASKTYPE_ARRAY) { // encode array length retval |= UA_Int32_encodeBinary(&(src->arrayLength),pos,dst); } if (src->arrayLength > 0) { //encode array as given by variant type for (i=0;iarrayLength;i++) { retval |= src->vt->encodeBinary(src->data[i],pos,dst); } } else { if (src->data == UA_NULL) { if (src->vt->ns0Id == UA_INVALIDTYPE_NS0) { retval = UA_SUCCESS; } else { retval = UA_ERR_NO_MEMORY; } } else { retval |= src->vt->encodeBinary(src->data[i],pos,dst); } } if (src->encodingMask & UA_VARIANT_ENCODINGMASKTYPE_DIMENSIONS) { // encode array dimension field // FIXME: encode array dimension field printf("shit happens - encode array dimension field wanted"); } UA_TYPE_END_XXCODEBINARY UA_Int32 UA_Variant_decodeBinary(UA_ByteString const * src, UA_Int32 *pos, UA_Variant *dst) { UA_Int32 retval = UA_SUCCESS; UA_Variant_init(dst); CHECKED_DECODE(UA_Byte_decodeBinary(src,pos,&(dst->encodingMask)), ;); UA_Int32 ns0Id = dst->encodingMask & UA_VARIANT_ENCODINGMASKTYPE_TYPEID_MASK; // initialize vTable UA_Int32 uaIdx = UA_toIndex(ns0Id); if(UA_VTable_isValidType(uaIdx) != UA_SUCCESS) return UA_ERROR; dst->vt = &UA_[uaIdx]; // get size of array if (dst->encodingMask & UA_VARIANT_ENCODINGMASKTYPE_ARRAY) { // get array length CHECKED_DECODE(UA_Int32_decodeBinary(src, pos, &dst->arrayLength), ;); } else { dst->arrayLength = 1; } if (ns0Id == UA_INVALIDTYPE_NS0) { // handle NULL-Variant ! dst->data = UA_NULL; dst->arrayLength = -1; } else { // allocate array and decode CHECKED_DECODE(UA_Array_new(&dst->data, dst->arrayLength, uaIdx), dst->data = UA_NULL); CHECKED_DECODE(UA_Array_decodeBinary(src, dst->arrayLength, uaIdx, pos, &dst->data), UA_Variant_deleteMembers(dst)); } if (dst->encodingMask & UA_VARIANT_ENCODINGMASKTYPE_DIMENSIONS) { // TODO: decode array dimension field printf("shit happens - decode array dimension field wanted"); } return retval; } UA_TYPE_METHOD_DELETE_STRUCT(UA_Variant) UA_Int32 UA_Variant_deleteMembers(UA_Variant * p) { UA_Int32 retval = UA_SUCCESS; if(p->data != UA_NULL) { retval |= UA_Array_delete(&p->data,p->arrayLength,UA_toIndex(p->vt->ns0Id)); } return retval; } UA_Int32 UA_Variant_init(UA_Variant * p){ if(p==UA_NULL)return UA_ERROR; p->arrayLength = -1; // no element, p->data == UA_NULL p->data = UA_NULL; p->encodingMask = 0; p->vt = &UA_[UA_INVALIDTYPE]; return UA_SUCCESS; } UA_TYPE_METHOD_NEW_DEFAULT(UA_Variant) UA_Int32 UA_Variant_copy(UA_Variant const *src, UA_Variant *dst) { UA_Int32 retval = UA_SUCCESS; UA_Int32 ns0Id = dst->encodingMask & UA_VARIANT_ENCODINGMASKTYPE_TYPEID_MASK; // initialize vTable UA_Int32 uaIdx = UA_toIndex(ns0Id); if(UA_VTable_isValidType(uaIdx) != UA_SUCCESS){ return UA_ERROR; } dst->vt = &UA_[uaIdx]; retval |= UA_Int32_copy(&(src->arrayLength), &(dst->arrayLength)); retval |= UA_Byte_copy(&(src->encodingMask), &(dst->encodingMask)); if (src->encodingMask & UA_VARIANT_ENCODINGMASKTYPE_ARRAY) { retval |= UA_Array_copy((const void * const *)(src->data),src->arrayLength, uaIdx,(void***)&(dst->data)); } else { retval |= src->vt[uaIdx].copy(*src->data,*src->data); } return retval; } //TODO: place this define at the server configuration #define MAX_PICO_SECONDS 1000 UA_Int32 UA_DataValue_decodeBinary(UA_ByteString const * src, UA_Int32* pos, UA_DataValue* dst) { UA_Int32 retval = UA_SUCCESS; UA_DataValue_init(dst); retval |= UA_Byte_decodeBinary(src,pos,&(dst->encodingMask)); if (dst->encodingMask & UA_DATAVALUE_ENCODINGMASK_VARIANT) { CHECKED_DECODE(UA_Variant_decodeBinary(src,pos,&(dst->value)), UA_DataValue_deleteMembers(dst)); } if (dst->encodingMask & UA_DATAVALUE_ENCODINGMASK_STATUSCODE) { CHECKED_DECODE(UA_StatusCode_decodeBinary(src,pos,&(dst->status)), UA_DataValue_deleteMembers(dst)); } if (dst->encodingMask & UA_DATAVALUE_ENCODINGMASK_SOURCETIMESTAMP) { CHECKED_DECODE(UA_DateTime_decodeBinary(src,pos,&(dst->sourceTimestamp)), UA_DataValue_deleteMembers(dst)); } if (dst->encodingMask & UA_DATAVALUE_ENCODINGMASK_SOURCEPICOSECONDS) { CHECKED_DECODE(UA_Int16_decodeBinary(src,pos,&(dst->sourcePicoseconds)), UA_DataValue_deleteMembers(dst)); if (dst->sourcePicoseconds > MAX_PICO_SECONDS) { dst->sourcePicoseconds = MAX_PICO_SECONDS; } } if (dst->encodingMask & UA_DATAVALUE_ENCODINGMASK_SERVERTIMESTAMP) { CHECKED_DECODE(UA_DateTime_decodeBinary(src,pos,&(dst->serverTimestamp)), UA_DataValue_deleteMembers(dst)); } if (dst->encodingMask & UA_DATAVALUE_ENCODINGMASK_SERVERPICOSECONDS) { CHECKED_DECODE(UA_Int16_decodeBinary(src,pos,&(dst->serverPicoseconds)), UA_DataValue_deleteMembers(dst)); if (dst->serverPicoseconds > MAX_PICO_SECONDS) { dst->serverPicoseconds = MAX_PICO_SECONDS; } } return retval; } UA_TYPE_START_ENCODEBINARY(UA_DataValue) retval |= UA_Byte_encodeBinary(&(src->encodingMask),pos,dst); if (src->encodingMask & UA_DATAVALUE_ENCODINGMASK_VARIANT) { retval |= UA_Variant_encodeBinary(&(src->value),pos,dst); } if (src->encodingMask & UA_DATAVALUE_ENCODINGMASK_STATUSCODE) { retval |= UA_StatusCode_encodeBinary(&(src->status),pos,dst); } if (src->encodingMask & UA_DATAVALUE_ENCODINGMASK_SOURCETIMESTAMP) { retval |= UA_DateTime_encodeBinary(&(src->sourceTimestamp),pos,dst); } if (src->encodingMask & UA_DATAVALUE_ENCODINGMASK_SOURCEPICOSECONDS) { retval |= UA_Int16_encodeBinary(&(src->sourcePicoseconds),pos,dst); } if (src->encodingMask & UA_DATAVALUE_ENCODINGMASK_SERVERTIMESTAMP) { retval |= UA_DateTime_encodeBinary(&(src->serverTimestamp),pos,dst); } if (src->encodingMask & UA_DATAVALUE_ENCODINGMASK_SERVERPICOSECONDS) { retval |= UA_Int16_encodeBinary(&(src->serverPicoseconds),pos,dst); } UA_TYPE_END_XXCODEBINARY UA_Int32 UA_DataValue_calcSize(UA_DataValue const * p) { UA_Int32 length = 0; if (p == UA_NULL) { // get static storage size length = sizeof(UA_DataValue); } else { // get decoding size length = sizeof(UA_Byte); if (p->encodingMask & UA_DATAVALUE_ENCODINGMASK_VARIANT) { // FIXME: this one can return with an error value instead of a size length += UA_Variant_calcSize(&(p->value)); } if (p->encodingMask & UA_DATAVALUE_ENCODINGMASK_STATUSCODE) { length += sizeof(UA_UInt32); //dataValue->status } if (p->encodingMask & UA_DATAVALUE_ENCODINGMASK_SOURCETIMESTAMP) { length += sizeof(UA_DateTime); //dataValue->sourceTimestamp } if (p->encodingMask & UA_DATAVALUE_ENCODINGMASK_SOURCEPICOSECONDS) { length += sizeof(UA_Int64); //dataValue->sourcePicoseconds } if (p->encodingMask & UA_DATAVALUE_ENCODINGMASK_SERVERTIMESTAMP) { length += sizeof(UA_DateTime); //dataValue->serverTimestamp } if (p->encodingMask & UA_DATAVALUE_ENCODINGMASK_SERVERPICOSECONDS) { length += sizeof(UA_Int64); //dataValue->serverPicoseconds } } return length; } UA_TYPE_METHOD_DELETE_STRUCT(UA_DataValue) UA_Int32 UA_DataValue_deleteMembers(UA_DataValue * p) { UA_Int32 retval = UA_SUCCESS; UA_Variant_deleteMembers(&p->value); return retval; } UA_Int32 UA_DataValue_init(UA_DataValue * p){ if(p==UA_NULL)return UA_ERROR; p->encodingMask = 0; p->serverPicoseconds = 0; UA_DateTime_init(&(p->serverTimestamp)); p->sourcePicoseconds = 0; UA_DateTime_init(&(p->sourceTimestamp)); UA_StatusCode_init(&(p->status)); UA_Variant_init(&(p->value)); return UA_SUCCESS; } UA_TYPE_METHOD_NEW_DEFAULT(UA_DataValue) UA_Int32 UA_DataValue_copy(UA_DataValue const *src, UA_DataValue *dst){ UA_Int32 retval = UA_SUCCESS; //TODO can be optimized by direct UA_memcpy call UA_Byte_copy(&(src->encodingMask), &(dst->encodingMask)); UA_Int16_copy(&(src->serverPicoseconds),&(dst->serverPicoseconds)); UA_DateTime_copy(&(src->serverTimestamp),&(dst->serverTimestamp)); UA_Int16_copy(&(src->sourcePicoseconds), &(dst->sourcePicoseconds)); UA_DateTime_copy(&(src->sourceTimestamp),&(dst->sourceTimestamp)); UA_StatusCode_copy(&(src->status),&(dst->status)); UA_Variant_copy(&(src->value),&(dst->value)); return retval; } /* UA_InvalidType - internal type necessary to handle inited Variants correctly */ UA_Int32 UA_InvalidType_calcSize(UA_InvalidType const * p) { return 0; } UA_TYPE_START_ENCODEBINARY(UA_InvalidType) retval = UA_ERR_INVALID_VALUE; UA_TYPE_END_XXCODEBINARY UA_TYPE_START_DECODEBINARY(UA_InvalidType) retval = UA_ERR_INVALID_VALUE; UA_TYPE_END_XXCODEBINARY UA_Int32 UA_InvalidType_free(UA_InvalidType* p) { return UA_ERR_INVALID_VALUE; } UA_Int32 UA_InvalidType_delete(UA_InvalidType* p) { return UA_ERR_INVALID_VALUE; } UA_Int32 UA_InvalidType_deleteMembers(UA_InvalidType* p) { return UA_ERR_INVALID_VALUE; } UA_Int32 UA_InvalidType_init(UA_InvalidType* p) { return UA_ERR_INVALID_VALUE; } UA_Int32 UA_InvalidType_copy(UA_InvalidType const* src, UA_InvalidType *dst) { return UA_ERR_INVALID_VALUE; } UA_Int32 UA_InvalidType_new(UA_InvalidType** p) { return UA_ERR_INVALID_VALUE; }