
Author Manuscript of the publication in
Proceedings of the 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation

©2018 IEEE, 978-1-5386-7107-8/18

Open Source OPC UA PubSub over TSN
for Realtime Industrial Communication
Julius Pfrommer∗, Andreas Ebner∗, Siddharth Ravikumar† and Bhagath Karunakaran†

∗Fraunhofer IOSB, Fraunhoferstraße 1, 76131 Karlsruhe, Germany
julius.pfrommer@iosb.fraunhofer.de, ebner.andreas@outlook.com

†Kalycito Infotech, 6/2 Pappampatti Pirivu Trichy Road, 641103 Kannampalayam Coimbatore, India
siddharth.r@kalycito.com, bhagath@kalycito.com

Abstract—OPC UA is a client-server communication protocol
for industrial use cases without hard realtime requirements. The
new PubSub extension of OPC UA adds the possibility of many-to-
many communication based on the Publish / Subscribe paradigm.
In conjunction with the upcoming Time-Sensitive Networking
(TSN) extensions of Ethernet, OPC UA PubSub aims to also
cover time-deterministic connectivity. This poses requirements
to OPC UA implementations that have traditionally not been
regarded. We propose an approach to combine non-realtime
OPC UA servers with realtime OPC UA PubSub where both can
access a shared information model without the loss of realtime
guarantees for the publisher. As a result, the publisher can be run
inside a (hardware-triggered) interrupt to ensure short delays and
small jitter. An open source implementation of OPC UA PubSub
is provided based on the open62541 SDK. This is also the basis
for measurements used to evaluate the potential of the technology.

I. INTRODUCTION

OPC UA is widely used for flexible best-effort communica-
tion in automation. For many use cases, OPC UA has replaced
its predecessor, the Microsoft Windows-centric OPC Classic,
as well as many vendor-specific protocols. The hope associated
with OPC UA is to achieve uniform standardized and secure
communication across vendors, application domains and levels
of the automation hierarchy. The current usage practice and
the emergence of OPC UA companion specifications for many
application domains support this claim.

The new part 14 of the OPC UA specification defines
an extension of OPC UA based on the Publish / Subscribe
communication paradigm [1]. This opens up new usage
scenarios, including many-to-many communication. In addition,
the integration of OPC UA PubSub with Time-Senstive
Networking (TSN) is designated to additionally enable realtime
communication. However, there exists currently a gap between
the commonly available OPC UA SDKs and the realtime
requirements of field-level automation equipment. This paper
attempts to close this gap.

This section continues with some background of the OPC
UA standard and Time-Sensitive Networking (TSN). Section II
proposes ways to couple non-realtime OPC UA servers with a
realtime OPC UA PubSub publisher. Our implementation of
this approach based on the open62541 SDK is discussed in

Section III. This is the basis for the evaluation in Section IV.
Section V concludes with a summary and future outlook.

A. OPC Unified Architecture

OPC UA is a client-server protocol for industrial com-
munication based on TCP/IP. It has been standardized as
IEC 62541. An OPC UA server provides access to data and
functionality that is structured in an object-oriented information
model. Clients interact with the information model via a set of
standardized services. Each of the service defines a request and
a response message for the interaction. OPC UA strictly adheres
to the Request / Response communication pattern. However,
since OPC UA is an asynchronous protocol, a subscription
mechanism can be used for push-transmission of notifications
only when they occur.

Similar to its predecessor OPC Classic, OPC UA has become
a major contender for flexible vendor-neutral communication
in industrial applications. The OPC Foundation drives the
continuous improvement of the standard, the development of
companion specifications to standardize information models
for the different application domains. Ot also provides the
infrastructure for compliance certification in order to ensure
the interoperability of implementations.

B. Time-Sensitive Networking (TSN)

Within the IEEE 802.1 standards series, enhancements of
Ethernet for realtime communication have been developed
first under the name of Audio Video Bridging (AVB) and
in recent years as Time-Sensitive Networking (TSN). Some
standards that are part of TSN have already been adopted,
such as clock synchronization of the participants in IEEE
802.1AS [2] and the reservation of transfer capacity via time
slots in IEEE 802.1Qbv. See Table I for an overview on
the standards in the TSN standards series. The authors of
[3] describe traffic types for common use cases in industrial
communication and their relation to the TSN standards. See
also [4] for the computation of the potential performance of
Ethernet-based realtime protocols.

The advantage of TSN compared to classical fieldbuses is
the vendor neutrality without licensing fees, potentially higher



TABLE I
TSN ENHANCEMENTS IN THE IEEE 802.1 SERIES

Standard Title

IEEE 802.1Qav Forwarding and Queuing Enhancements for Time-
Sensitive Streams

IEEE 802.1AS-Rev Timing and Synchronization for Time-Sensitive
Applications

IEEE 802.1Qbu Frame preemption
IEEE 802.1Qbv Enhancements for Scheduled Traffic
IEEE 802.1Qca Path Control and Reservation
IEEE 802.1Qcc Stream Reservation Protocol (SRP) Enhance-

ments and Performance Improvements
IEEE 802.1Qci Per-Stream Filtering and Policing
IEEE 802.1Qcr Bridges and Bridged Networks Amendment:

Asynchronous Traffic Shaping
IEEE 802.1CB Frame Replication & Elimination for Reliability

throughput [5], the possibility to flexibly add connections with
assured quality-of-service properties over multiple hops in a
bridged network [6] and the economies of scale of a wide-
spread technology that is intended for both industrial use-cases
and consumer devices.

C. OPC UA PubSub and OPC UA PubSub over TSN

The new Part 14 of the OPC UA specification [7] extends
OPC UA with Publish / Subscribe. Publish / Subscribe lets
many subscribers register for a topic. Published messages are
forwarded to all subscribers of the message’s topic. Given
that potentially many subscribers receive the same message,
in some sense OPC UA PubSub returns to the definition of
“telegram formats” similar to traditional fieldbuses. But the
message layout can be configured at runtime. The content of the
published messages is defined by a so-called PublishedDataSet,
which represents a collection of variables and event sources
from the information model of an OPC UA server. The
PublishedDataSet can be flexibly configured and its definition
can be looked up in the server to understand the semantic
meaning of the published payload.

First, the standard defines the integration of existing Pub-
lish / Subscribe protocols, specifically MQTT and AMQP. These
protocols define a central broker for the message distribution
and are commonly used in the public Internet. Second, the
standard defines a custom UDP-based distribution protocol,
called UADP, based on the multicast mechanisms of the IP
standard. Here, the subscriber registers for a multicast group
represented by an IP address in a special range. Packets sent to
this address are forwarded to all members of the group. This
delegates a large part of the publisher complexity to the existing
network infrastructure (router, switches, and so on). However,
the availability of multicast is generally limited to local area
networks. Lastly, the standard also defines transport of PubSub
messages directly on the data link layer. Being already at the
Ethernet level, OPC UA PubSub can be readily integrated with
TSN for realtime transport. For this, the Ethernet EtherType

0xB62C has been registered at the IEEE specifically for the
use with OPC UA PubSub over TSN.1

It has to be noted that the origin of an OPC UA PubSub
message in the server’s information model is no longer visible
once the message has been serialized into a network frame.
This opens the possibility of very lightweight OPC UA
PubSub implementations that assume a fixed PublishedDataSet
and directly generate the desired network frame without the
overhead of a full OPC UA server. This of course comes at
the loss of the possibility to lookup the origin of values and
hence their semantic interpretation.

II. MIXING NON-REALTIME OPC UA SERVERS WITH
REALTIME OPC UA PUBSUB

The IEEE 802.1Qbv standard defines transmission queues for
different traffic classes, each controlled by a transmission gate.
The transmission gates are cyclically triggered. The network
devices are clock-synchronized (via IEEE 802.1AS-Rev) and
the time slots for the transmission queues (windows) are
configured. If a packet does not complete transmission within
its designated time slot, then it must wait until the next cycle.
Since the realtime guarantees of interest are end-to-end (from
the sending application to the receiving application) and not
only between network devices, the preparation of the network
message needs to happen within a defined delay before the
opening of the transmission window.

We have to assume that TCP/IP based OPC UA servers can
not achieve hard realtime guarantees. But now they are intended
as the source of the values for OPC UA PubSub messages. On
a single-core system, the normal OPC UA server’s operations
could be preempted with a cyclic (hardware-triggered) interrupt
to execute the publisher in time. Multi-threaded programs can
use locks to protect race-conditions during access to shared
memory. But locking is not possible to protect shared memory
access for single-threaded programming with interrupts. When
the thread holding the lock is interrupted and the interrupt
requests the lock, it will never be released and the program
execution halts in a deadlock. Instead, all functions called
from an interrupt have to be reentrant. For example, the
standard POSIX malloc for dynamic memory allocation is
not reentrant and cannot be used inside the publisher [8]. Even
and more importantly, the access to the OPC UA information
model, with shared access from the normal OPC UA server,
needs to be reentrant as well.

The first possibility for this is the use of well-known shared
memory locations for scalar values that are replaced in place
with atomic operations.2 The use of atomic operations ensures
that updates cannot be interrupted, which could leave an
inconsistent value behind. But only small scalars (such as
integers and floating point numerals) are amenable to atomic
updates. The approach is illustrated in Figure 1a. It allows
for applications with extreme latency requirements, such as

1See the registry entry at http://standards-oui.ieee.org/ethertype/eth.txt.
2In the open62541 SDK, this is implemented with a DataSource callback for

specific variables, forwarding read and write requests to user-defined methods.



(a) Global shared memory with atomic operations.

(b) Copy-on-replace for immutable nodes. The node C is copied
to C’, edited and finally replaced with an atomic operation.

Fig. 1. Possibilities for accessing the information model of an OPC UA server
from an interrupt. Red arrows represent access from the interrupt that needs
to be reentrant.

motion control, since the values for the publisher are directly
accessed and not queried from the information model.

The second possibility is the use of copy-on-replace for
updates to the information model: The information model is
represented as a graph of nodes and typed references between
them. The underlying data structure for the information model
in the open62541 SDK is a hash-map from the node identifier
to the node representation in memory. Each node is treated as
immutable and cannot be modified once it has been inserted
into the hash-map. It is only possible to replace the entire
node with a modified copy. This replacement uses an atomic
compare-and-switch (CAS) operation. So the information is
always consistent, even if the server is interrupted mid-update.
This approach is shown in Figure 1b. The advantage of the
second approach is that any kind of value (also strings) can
be used for PubSub. Furthermore, the PubSub configuration,
also stored in the information model, can be accessed by the
publisher in every cycle without breaking realtime guarantees.
In addition to providing reentrant read-access to the information
model from an interrupt, copy-on-replace also enables lock-free
multi-threading for normal operations of the OPC UA server.

III. IMPLEMENTATION DETAILS

Fraunhofer IOSB has launched an open source implemen-
tation and evaluation of OPC UA PubSub over TSN together
with Kalycito Infotech, an engineering solutions provider for
embedded and realtime applications. The Open Source in
Automation Development Labs (OSADL) eG provided the
organizational framework for a consortium of companies from

Fig. 2. OPC UA PubSub over TSN demonstrator at the booth of the OPC
Foundation at Hannover Fair 2018. The following hardware platforms are
integrated into the demonstrator: Intel Atom/I210 by TQ-Systems, Dual chip
solution with ARM Cortex M4 + TSN switch from Analog Devices, FPGA-
TSN Cyclone V SoC by Intel PSG/Altera, FPGA-TSN Zync SoC by Xilinx.
The components are daisy-chained via integrated 2-port switches. The operating
systems used are Linux with RT-Preempt patches [9] and FreeRTOS.

industry jointly funding the effort. Besides the open source
implementation, the project has resulted in a demonstrator (see
Figure 2) and training events for the funding companies.

The implementation is based on the open62541 SDK
(https://open62541.org) [10]. It is written in C99 an open source
under the MPLv2 license. A hardware-abstraction layer helps to
keep the core library free from platform-specific interfaces (also
POSIX) so that porting to different hardware architectures and
operating systems is straightforward. OPC UA servers based
on the open62541 SDK require less than 100kB of both ROM
and RAM for a minimal set of activated features.

The focus of the OPC UA PubSub implementation is on the
binary message format and brokerless transport. The integration
of OPC UA PubSub uses three of the internal interfaces of
the SDK. First, the en- and decoding routines for the binary
protocol are reused to generate the payload of the published
NetworkMessage. Second, the OPC UA information model
holds the runtime values that are published. Third, the standard
OPC UA services are used to change the PubSub configuration
at runtime. This is possible as the PubSub configuration is also
represented in the information model.

As described in Section II, the OPC UA PubSub publisher is
called cyclically from a time-triggered interrupt. The interrupt-
based publisher internally performs the following steps:

1) Replace the default malloc with a simple buffer-based
implementation for the duration of the interrupt

2) Generate and populate the NetworkMessage data struc-



(a) Observed jitter without TBS.

(b) Observed jitter with TBS enabled.

Fig. 3. Jitter of the received OPC UA PubSub packets. Each line on the z-axis
(Repetitions) indicates a set of measurements with 400 samples each.

ture from the definition of the PublishedDataSet
3) Encode the NetworkMessage into a binary message buffer
4) Send (enqueue in hardware queue) the binary message

buffer in the TSN-capable network interface
5) Reset the buffer-based malloc and switch back to the

default implementation

IV. EVALUATION

The following measurements were performed on two iden-
tical PCs with an Intel Core i5-6402P processer running at
2.80GHz and Intel i210 network interface cards connected
via PCIe. The operating system is Linux 4.16.8-rt3 with RT-
Preempt patches. The PCs are connected peer to peer with an
Ethernet cable at a link speed of 1Gbps. The system clocks
of the two PCs are synchronized using IEEE 802.1AS-Rev.
A patch-set provided by Intel was used for the 802.1Qbv
functionality based on the SO_TXTIME socket option and
time-based scheduling (TBS).

The OPC UA PubSub traffic is configured at a 100µs cycle
time (10kHz). The transmitted OPC UA PubSub NetworkMes-
sage is based on a PublishedDataSet with a single integer value.
The PublishedDataSet configuration is read at every cycle and
the message is generated based on an up-to-date value read
from the information model. The configured offset of 5µs gives
enough time for the application to prepare the next packet
and transfer it to the underlying layers, so that the packet is
enqueued in time for its transmission window.

Figure 3 plots the observed jitter of OPC UA PubSub with
time-based scheduling and without. From Figure 3a it is evident

that the application publishes the packets without precise
timings when TBS is not configured. In contrast, Figure 3b
shows the timely transmission of the publish packets with
nanosecond jitter when TBS is enabled. This graph shows
about 40ns jitter of the received packets.

V. CONCLUSION

This paper has investigated how the Time-Sensitive Net-
working (TSN) extension of the Ethernet standards can be
used for the transport of OPC UA PubSub messages in
practice. We have proposed an approach where the message
for the publisher is prepared in a (hardware-triggered) interrupt.
Specific modifications are required to allow the interaction
between a best-effort standard OPC UA server and a realtime
OPC UA PubSub publisher with access to a shared information
model. The approach was implemented based on the open62541
OPC UA SDK. Latency measurements based on the Linux RT-
Preempt patches show that sub-millisecond publication intervals
can be achieved with minimal jitter.

Future plans with regards to the use of TSN for realtime OPC
UA PubSub include porting to additional TSN implementations
and embedded platform, long-term tests in a QA farm and
the creation of OPC UA PubSub over TSN distributions –
spanning hardware (TSN IP), operating system, and the OPC
UA SDK, with tested end-to-end latency and jitter properties.
Additional features for the implementation are planned also
for non-realtime use cases of OPC UA PubSub. For example
the addition of JSON-based message encoding, broker-based
message distribution, using the MQTT and AMQP protocols,
and message-encryption.

REFERENCES

[1] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec,
“The many faces of publish/subscribe,” ACM computing surveys
(CSUR), vol. 35, no. 2, pp. 114–131, 2003.

[2] S. Schriegel and J. Jasperneite, “Investigation of industrial
environmental influences on clock sources and their effect on
the synchronization accuracy of ieee 1588,” in Precision Clock
Synchronization for Measurement, Control and Communication,
2007. ISPCS 2007. IEEE International Symposium on, IEEE,
2007, pp. 50–55.

[3] Industrial Internet Consortium, “Time Sensitive Networks for
Flexible Manufacturing Testbed - Description of Converged
Traffic Types,” Tech. Rep., 2018.

[4] J. Jasperneite, M. Schumacher, and K. Weber, “Limits of
increasing the performance of industrial ethernet protocols,” in
Emerging Technologies and Factory Automation, 2007. ETFA.
IEEE Conference on, IEEE, 2007, pp. 17–24.

[5] Shaper Group, “OPC UA TSN: A new Solution for Industrial
Communication,” Tech. Rep., 2018.

[6] M. Gutiérrez, A. Ademaj, W. Steiner, R. Dobrin, and S.
Punnekkat, “Self-configuration of ieee 802.1 tsn networks,”
in Emerging Technologies and Factory Automation (ETFA),
2017 22nd IEEE International Conference on, IEEE, 2017,
pp. 1–8.

[7] OPC Foundation, OPC Unified Architecture Specification, Part
14: PubSub, 2018.

[8] D. R. Butenhof, Programming with POSIX threads. Addison-
Wesley Professional, 1997.



[9] F. Cerqueira and B. Brandenburg, “A comparison of scheduling
latency in linux, preempt-rt, and litmus rt,” in 9th Annual
Workshop on Operating Systems Platforms for Embedded Real-
Time Applications, SYSGO AG, 2013, pp. 19–29.

[10] F. Palm, S. Grüner, J. Pfrommer, M. Graube, and L. Urbas,
“Open source as enabler for opc ua in industrial automation,” in
Emerging Technologies & Factory Automation (ETFA), 2015
IEEE 20th Conference on, IEEE, 2015, pp. 1–6.


