tweetnacl.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823
  1. /*
  2. * http://tweetnacl.cr.yp.to/
  3. * TweetNaCl was put in the public domain by the authors Bernstein et al.
  4. * The API is th same as for NaCl (http://nacl.cr.yp.to/).
  5. */
  6. #include "tweetnacl.h"
  7. #define FOR(i,n) for (i = 0;i < n;++i)
  8. #define sv static void
  9. /* Manual change from TweetNaCl version 20140427: Use C99 integer types
  10. typedef unsigned char u8;
  11. typedef unsigned long u32;
  12. typedef unsigned long long u64;
  13. typedef long long i64; */
  14. #include <inttypes.h>
  15. typedef uint8_t u8;
  16. typedef uint32_t u32;
  17. typedef uint64_t u64;
  18. typedef int64_t i64;
  19. /* end manual change */
  20. typedef i64 gf[16];
  21. extern void randombytes(u8 *,u64);
  22. static const u8
  23. _0[16],
  24. _9[32] = {9};
  25. static const gf
  26. gf0,
  27. gf1 = {1},
  28. _121665 = {0xDB41,1},
  29. D = {0x78a3, 0x1359, 0x4dca, 0x75eb, 0xd8ab, 0x4141, 0x0a4d, 0x0070, 0xe898, 0x7779, 0x4079, 0x8cc7, 0xfe73, 0x2b6f, 0x6cee, 0x5203},
  30. D2 = {0xf159, 0x26b2, 0x9b94, 0xebd6, 0xb156, 0x8283, 0x149a, 0x00e0, 0xd130, 0xeef3, 0x80f2, 0x198e, 0xfce7, 0x56df, 0xd9dc, 0x2406},
  31. X = {0xd51a, 0x8f25, 0x2d60, 0xc956, 0xa7b2, 0x9525, 0xc760, 0x692c, 0xdc5c, 0xfdd6, 0xe231, 0xc0a4, 0x53fe, 0xcd6e, 0x36d3, 0x2169},
  32. Y = {0x6658, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666},
  33. I = {0xa0b0, 0x4a0e, 0x1b27, 0xc4ee, 0xe478, 0xad2f, 0x1806, 0x2f43, 0xd7a7, 0x3dfb, 0x0099, 0x2b4d, 0xdf0b, 0x4fc1, 0x2480, 0x2b83};
  34. static u32 L32(u32 x,int c) { return (x << c) | ((x&0xffffffff) >> (32 - c)); }
  35. static u32 ld32(const u8 *x)
  36. {
  37. u32 u = x[3];
  38. u = (u<<8)|x[2];
  39. u = (u<<8)|x[1];
  40. return (u<<8)|x[0];
  41. }
  42. static u64 dl64(const u8 *x)
  43. {
  44. u64 i,u=0;
  45. FOR(i,8) u=(u<<8)|x[i];
  46. return u;
  47. }
  48. sv st32(u8 *x,u32 u)
  49. {
  50. int i;
  51. FOR(i,4) { x[i] = u; u >>= 8; }
  52. }
  53. sv ts64(u8 *x,u64 u)
  54. {
  55. int i;
  56. for (i = 7;i >= 0;--i) { x[i] = u; u >>= 8; }
  57. }
  58. static int vn(const u8 *x,const u8 *y,int n)
  59. {
  60. u32 i,d = 0;
  61. FOR(i,n) d |= x[i]^y[i];
  62. return (1 & ((d - 1) >> 8)) - 1;
  63. }
  64. int crypto_verify_16(const u8 *x,const u8 *y)
  65. {
  66. return vn(x,y,16);
  67. }
  68. int crypto_verify_32(const u8 *x,const u8 *y)
  69. {
  70. return vn(x,y,32);
  71. }
  72. sv core(u8 *out,const u8 *in,const u8 *k,const u8 *c,int h)
  73. {
  74. u32 w[16],x[16],y[16],t[4];
  75. int i,j,m;
  76. FOR(i,4) {
  77. x[5*i] = ld32(c+4*i);
  78. x[1+i] = ld32(k+4*i);
  79. x[6+i] = ld32(in+4*i);
  80. x[11+i] = ld32(k+16+4*i);
  81. }
  82. FOR(i,16) y[i] = x[i];
  83. FOR(i,20) {
  84. FOR(j,4) {
  85. FOR(m,4) t[m] = x[(5*j+4*m)%16];
  86. t[1] ^= L32(t[0]+t[3], 7);
  87. t[2] ^= L32(t[1]+t[0], 9);
  88. t[3] ^= L32(t[2]+t[1],13);
  89. t[0] ^= L32(t[3]+t[2],18);
  90. FOR(m,4) w[4*j+(j+m)%4] = t[m];
  91. }
  92. FOR(m,16) x[m] = w[m];
  93. }
  94. if (h) {
  95. FOR(i,16) x[i] += y[i];
  96. FOR(i,4) {
  97. x[5*i] -= ld32(c+4*i);
  98. x[6+i] -= ld32(in+4*i);
  99. }
  100. FOR(i,4) {
  101. st32(out+4*i,x[5*i]);
  102. st32(out+16+4*i,x[6+i]);
  103. }
  104. } else
  105. FOR(i,16) st32(out + 4 * i,x[i] + y[i]);
  106. }
  107. int crypto_core_salsa20(u8 *out,const u8 *in,const u8 *k,const u8 *c)
  108. {
  109. core(out,in,k,c,0);
  110. return 0;
  111. }
  112. int crypto_core_hsalsa20(u8 *out,const u8 *in,const u8 *k,const u8 *c)
  113. {
  114. core(out,in,k,c,1);
  115. return 0;
  116. }
  117. static const u8 sigma[16] = "expand 32-byte k";
  118. int crypto_stream_salsa20_xor(u8 *c,const u8 *m,u64 b,const u8 *n,const u8 *k)
  119. {
  120. u8 z[16],x[64];
  121. u32 u,i;
  122. if (!b) return 0;
  123. FOR(i,16) z[i] = 0;
  124. FOR(i,8) z[i] = n[i];
  125. while (b >= 64) {
  126. crypto_core_salsa20(x,z,k,sigma);
  127. FOR(i,64) c[i] = (m?m[i]:0) ^ x[i];
  128. u = 1;
  129. for (i = 8;i < 16;++i) {
  130. u += (u32) z[i];
  131. z[i] = u;
  132. u >>= 8;
  133. }
  134. b -= 64;
  135. c += 64;
  136. if (m) m += 64;
  137. }
  138. if (b) {
  139. crypto_core_salsa20(x,z,k,sigma);
  140. FOR(i,b) c[i] = (m?m[i]:0) ^ x[i];
  141. }
  142. return 0;
  143. }
  144. int crypto_stream_salsa20(u8 *c,u64 d,const u8 *n,const u8 *k)
  145. {
  146. return crypto_stream_salsa20_xor(c,0,d,n,k);
  147. }
  148. int crypto_stream(u8 *c,u64 d,const u8 *n,const u8 *k)
  149. {
  150. u8 s[32];
  151. crypto_core_hsalsa20(s,n,k,sigma);
  152. return crypto_stream_salsa20(c,d,n+16,s);
  153. }
  154. int crypto_stream_xor(u8 *c,const u8 *m,u64 d,const u8 *n,const u8 *k)
  155. {
  156. u8 s[32];
  157. crypto_core_hsalsa20(s,n,k,sigma);
  158. return crypto_stream_salsa20_xor(c,m,d,n+16,s);
  159. }
  160. sv add1305(u32 *h,const u32 *c)
  161. {
  162. u32 j,u = 0;
  163. FOR(j,17) {
  164. u += h[j] + c[j];
  165. h[j] = u & 255;
  166. u >>= 8;
  167. }
  168. }
  169. static const u32 minusp[17] = {
  170. 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 252
  171. } ;
  172. int crypto_onetimeauth(u8 *out,const u8 *m,u64 n,const u8 *k)
  173. {
  174. u32 s,i,j,u,x[17],r[17],h[17],c[17],g[17];
  175. FOR(j,17) r[j]=h[j]=0;
  176. FOR(j,16) r[j]=k[j];
  177. r[3]&=15;
  178. r[4]&=252;
  179. r[7]&=15;
  180. r[8]&=252;
  181. r[11]&=15;
  182. r[12]&=252;
  183. r[15]&=15;
  184. while (n > 0) {
  185. FOR(j,17) c[j] = 0;
  186. for (j = 0;(j < 16) && (j < n);++j) c[j] = m[j];
  187. c[j] = 1;
  188. m += j; n -= j;
  189. add1305(h,c);
  190. FOR(i,17) {
  191. x[i] = 0;
  192. FOR(j,17) x[i] += h[j] * ((j <= i) ? r[i - j] : 320 * r[i + 17 - j]);
  193. }
  194. FOR(i,17) h[i] = x[i];
  195. u = 0;
  196. FOR(j,16) {
  197. u += h[j];
  198. h[j] = u & 255;
  199. u >>= 8;
  200. }
  201. u += h[16]; h[16] = u & 3;
  202. u = 5 * (u >> 2);
  203. FOR(j,16) {
  204. u += h[j];
  205. h[j] = u & 255;
  206. u >>= 8;
  207. }
  208. u += h[16]; h[16] = u;
  209. }
  210. FOR(j,17) g[j] = h[j];
  211. add1305(h,minusp);
  212. s = -(h[16] >> 7);
  213. FOR(j,17) h[j] ^= s & (g[j] ^ h[j]);
  214. FOR(j,16) c[j] = k[j + 16];
  215. c[16] = 0;
  216. add1305(h,c);
  217. FOR(j,16) out[j] = h[j];
  218. return 0;
  219. }
  220. int crypto_onetimeauth_verify(const u8 *h,const u8 *m,u64 n,const u8 *k)
  221. {
  222. u8 x[16];
  223. crypto_onetimeauth(x,m,n,k);
  224. return crypto_verify_16(h,x);
  225. }
  226. int crypto_secretbox(u8 *c,const u8 *m,u64 d,const u8 *n,const u8 *k)
  227. {
  228. int i;
  229. if (d < 32) return -1;
  230. crypto_stream_xor(c,m,d,n,k);
  231. crypto_onetimeauth(c + 16,c + 32,d - 32,c);
  232. FOR(i,16) c[i] = 0;
  233. return 0;
  234. }
  235. int crypto_secretbox_open(u8 *m,const u8 *c,u64 d,const u8 *n,const u8 *k)
  236. {
  237. int i;
  238. u8 x[32];
  239. if (d < 32) return -1;
  240. crypto_stream(x,32,n,k);
  241. if (crypto_onetimeauth_verify(c + 16,c + 32,d - 32,x) != 0) return -1;
  242. crypto_stream_xor(m,c,d,n,k);
  243. FOR(i,32) m[i] = 0;
  244. return 0;
  245. }
  246. sv set25519(gf r, const gf a)
  247. {
  248. int i;
  249. FOR(i,16) r[i]=a[i];
  250. }
  251. sv car25519(gf o)
  252. {
  253. int i;
  254. i64 c;
  255. FOR(i,16) {
  256. o[i]+=(1LL<<16);
  257. c=o[i]>>16;
  258. o[(i+1)*(i<15)]+=c-1+37*(c-1)*(i==15);
  259. o[i]-=c<<16;
  260. }
  261. }
  262. sv sel25519(gf p,gf q,int b)
  263. {
  264. i64 t,i,c=~(b-1);
  265. FOR(i,16) {
  266. t= c&(p[i]^q[i]);
  267. p[i]^=t;
  268. q[i]^=t;
  269. }
  270. }
  271. sv pack25519(u8 *o,const gf n)
  272. {
  273. int i,j,b;
  274. gf m,t;
  275. FOR(i,16) t[i]=n[i];
  276. car25519(t);
  277. car25519(t);
  278. car25519(t);
  279. FOR(j,2) {
  280. m[0]=t[0]-0xffed;
  281. for(i=1;i<15;i++) {
  282. m[i]=t[i]-0xffff-((m[i-1]>>16)&1);
  283. m[i-1]&=0xffff;
  284. }
  285. m[15]=t[15]-0x7fff-((m[14]>>16)&1);
  286. b=(m[15]>>16)&1;
  287. m[14]&=0xffff;
  288. sel25519(t,m,1-b);
  289. }
  290. FOR(i,16) {
  291. o[2*i]=t[i]&0xff;
  292. o[2*i+1]=t[i]>>8;
  293. }
  294. }
  295. static int neq25519(const gf a, const gf b)
  296. {
  297. u8 c[32],d[32];
  298. pack25519(c,a);
  299. pack25519(d,b);
  300. return crypto_verify_32(c,d);
  301. }
  302. static u8 par25519(const gf a)
  303. {
  304. u8 d[32];
  305. pack25519(d,a);
  306. return d[0]&1;
  307. }
  308. sv unpack25519(gf o, const u8 *n)
  309. {
  310. int i;
  311. FOR(i,16) o[i]=n[2*i]+((i64)n[2*i+1]<<8);
  312. o[15]&=0x7fff;
  313. }
  314. sv A(gf o,const gf a,const gf b)
  315. {
  316. int i;
  317. FOR(i,16) o[i]=a[i]+b[i];
  318. }
  319. sv Z(gf o,const gf a,const gf b)
  320. {
  321. int i;
  322. FOR(i,16) o[i]=a[i]-b[i];
  323. }
  324. sv M(gf o,const gf a,const gf b)
  325. {
  326. i64 i,j,t[31];
  327. FOR(i,31) t[i]=0;
  328. FOR(i,16) FOR(j,16) t[i+j]+=a[i]*b[j];
  329. FOR(i,15) t[i]+=38*t[i+16];
  330. FOR(i,16) o[i]=t[i];
  331. car25519(o);
  332. car25519(o);
  333. }
  334. sv S(gf o,const gf a)
  335. {
  336. M(o,a,a);
  337. }
  338. sv inv25519(gf o,const gf i)
  339. {
  340. gf c;
  341. int a;
  342. FOR(a,16) c[a]=i[a];
  343. for(a=253;a>=0;a--) {
  344. S(c,c);
  345. if(a!=2&&a!=4) M(c,c,i);
  346. }
  347. FOR(a,16) o[a]=c[a];
  348. }
  349. sv pow2523(gf o,const gf i)
  350. {
  351. gf c;
  352. int a;
  353. FOR(a,16) c[a]=i[a];
  354. for(a=250;a>=0;a--) {
  355. S(c,c);
  356. if(a!=1) M(c,c,i);
  357. }
  358. FOR(a,16) o[a]=c[a];
  359. }
  360. int crypto_scalarmult(u8 *q,const u8 *n,const u8 *p)
  361. {
  362. u8 z[32];
  363. i64 x[80],r,i;
  364. gf a,b,c,d,e,f;
  365. FOR(i,31) z[i]=n[i];
  366. z[31]=(n[31]&127)|64;
  367. z[0]&=248;
  368. unpack25519(x,p);
  369. FOR(i,16) {
  370. b[i]=x[i];
  371. d[i]=a[i]=c[i]=0;
  372. }
  373. a[0]=d[0]=1;
  374. for(i=254;i>=0;--i) {
  375. r=(z[i>>3]>>(i&7))&1;
  376. sel25519(a,b,r);
  377. sel25519(c,d,r);
  378. A(e,a,c);
  379. Z(a,a,c);
  380. A(c,b,d);
  381. Z(b,b,d);
  382. S(d,e);
  383. S(f,a);
  384. M(a,c,a);
  385. M(c,b,e);
  386. A(e,a,c);
  387. Z(a,a,c);
  388. S(b,a);
  389. Z(c,d,f);
  390. M(a,c,_121665);
  391. A(a,a,d);
  392. M(c,c,a);
  393. M(a,d,f);
  394. M(d,b,x);
  395. S(b,e);
  396. sel25519(a,b,r);
  397. sel25519(c,d,r);
  398. }
  399. FOR(i,16) {
  400. x[i+16]=a[i];
  401. x[i+32]=c[i];
  402. x[i+48]=b[i];
  403. x[i+64]=d[i];
  404. }
  405. inv25519(x+32,x+32);
  406. M(x+16,x+16,x+32);
  407. pack25519(q,x+16);
  408. return 0;
  409. }
  410. int crypto_scalarmult_base(u8 *q,const u8 *n)
  411. {
  412. return crypto_scalarmult(q,n,_9);
  413. }
  414. int crypto_box_keypair(u8 *y,u8 *x)
  415. {
  416. randombytes(x,32);
  417. return crypto_scalarmult_base(y,x);
  418. }
  419. int crypto_box_beforenm(u8 *k,const u8 *y,const u8 *x)
  420. {
  421. u8 s[32];
  422. crypto_scalarmult(s,x,y);
  423. return crypto_core_hsalsa20(k,_0,s,sigma);
  424. }
  425. int crypto_box_afternm(u8 *c,const u8 *m,u64 d,const u8 *n,const u8 *k)
  426. {
  427. return crypto_secretbox(c,m,d,n,k);
  428. }
  429. int crypto_box_open_afternm(u8 *m,const u8 *c,u64 d,const u8 *n,const u8 *k)
  430. {
  431. return crypto_secretbox_open(m,c,d,n,k);
  432. }
  433. int crypto_box(u8 *c,const u8 *m,u64 d,const u8 *n,const u8 *y,const u8 *x)
  434. {
  435. u8 k[32];
  436. crypto_box_beforenm(k,y,x);
  437. return crypto_box_afternm(c,m,d,n,k);
  438. }
  439. int crypto_box_open(u8 *m,const u8 *c,u64 d,const u8 *n,const u8 *y,const u8 *x)
  440. {
  441. u8 k[32];
  442. crypto_box_beforenm(k,y,x);
  443. return crypto_box_open_afternm(m,c,d,n,k);
  444. }
  445. static u64 R(u64 x,int c) { return (x >> c) | (x << (64 - c)); }
  446. static u64 Ch(u64 x,u64 y,u64 z) { return (x & y) ^ (~x & z); }
  447. static u64 Maj(u64 x,u64 y,u64 z) { return (x & y) ^ (x & z) ^ (y & z); }
  448. static u64 Sigma0(u64 x) { return R(x,28) ^ R(x,34) ^ R(x,39); }
  449. static u64 Sigma1(u64 x) { return R(x,14) ^ R(x,18) ^ R(x,41); }
  450. static u64 sigma0(u64 x) { return R(x, 1) ^ R(x, 8) ^ (x >> 7); }
  451. static u64 sigma1(u64 x) { return R(x,19) ^ R(x,61) ^ (x >> 6); }
  452. static const u64 K[80] =
  453. {
  454. 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
  455. 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
  456. 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
  457. 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
  458. 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
  459. 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
  460. 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
  461. 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
  462. 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
  463. 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
  464. 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
  465. 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
  466. 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
  467. 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
  468. 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
  469. 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
  470. 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
  471. 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
  472. 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
  473. 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
  474. };
  475. int crypto_hashblocks(u8 *x,const u8 *m,u64 n)
  476. {
  477. u64 z[8],b[8],a[8],w[16],t;
  478. int i,j;
  479. FOR(i,8) z[i] = a[i] = dl64(x + 8 * i);
  480. while (n >= 128) {
  481. FOR(i,16) w[i] = dl64(m + 8 * i);
  482. FOR(i,80) {
  483. FOR(j,8) b[j] = a[j];
  484. t = a[7] + Sigma1(a[4]) + Ch(a[4],a[5],a[6]) + K[i] + w[i%16];
  485. b[7] = t + Sigma0(a[0]) + Maj(a[0],a[1],a[2]);
  486. b[3] += t;
  487. FOR(j,8) a[(j+1)%8] = b[j];
  488. if (i%16 == 15)
  489. FOR(j,16)
  490. w[j] += w[(j+9)%16] + sigma0(w[(j+1)%16]) + sigma1(w[(j+14)%16]);
  491. }
  492. FOR(i,8) { a[i] += z[i]; z[i] = a[i]; }
  493. m += 128;
  494. n -= 128;
  495. }
  496. FOR(i,8) ts64(x+8*i,z[i]);
  497. return n;
  498. }
  499. static const u8 iv[64] = {
  500. 0x6a,0x09,0xe6,0x67,0xf3,0xbc,0xc9,0x08,
  501. 0xbb,0x67,0xae,0x85,0x84,0xca,0xa7,0x3b,
  502. 0x3c,0x6e,0xf3,0x72,0xfe,0x94,0xf8,0x2b,
  503. 0xa5,0x4f,0xf5,0x3a,0x5f,0x1d,0x36,0xf1,
  504. 0x51,0x0e,0x52,0x7f,0xad,0xe6,0x82,0xd1,
  505. 0x9b,0x05,0x68,0x8c,0x2b,0x3e,0x6c,0x1f,
  506. 0x1f,0x83,0xd9,0xab,0xfb,0x41,0xbd,0x6b,
  507. 0x5b,0xe0,0xcd,0x19,0x13,0x7e,0x21,0x79
  508. } ;
  509. int crypto_hash(u8 *out,const u8 *m,u64 n)
  510. {
  511. u8 h[64],x[256];
  512. u64 i,b = n;
  513. FOR(i,64) h[i] = iv[i];
  514. crypto_hashblocks(h,m,n);
  515. m += n;
  516. n &= 127;
  517. m -= n;
  518. FOR(i,256) x[i] = 0;
  519. FOR(i,n) x[i] = m[i];
  520. x[n] = 128;
  521. n = 256-128*(n<112);
  522. x[n-9] = b >> 61;
  523. ts64(x+n-8,b<<3);
  524. crypto_hashblocks(h,x,n);
  525. FOR(i,64) out[i] = h[i];
  526. return 0;
  527. }
  528. sv add(gf p[4],gf q[4])
  529. {
  530. gf a,b,c,d,t,e,f,g,h;
  531. Z(a, p[1], p[0]);
  532. Z(t, q[1], q[0]);
  533. M(a, a, t);
  534. A(b, p[0], p[1]);
  535. A(t, q[0], q[1]);
  536. M(b, b, t);
  537. M(c, p[3], q[3]);
  538. M(c, c, D2);
  539. M(d, p[2], q[2]);
  540. A(d, d, d);
  541. Z(e, b, a);
  542. Z(f, d, c);
  543. A(g, d, c);
  544. A(h, b, a);
  545. M(p[0], e, f);
  546. M(p[1], h, g);
  547. M(p[2], g, f);
  548. M(p[3], e, h);
  549. }
  550. sv cswap(gf p[4],gf q[4],u8 b)
  551. {
  552. int i;
  553. FOR(i,4)
  554. sel25519(p[i],q[i],b);
  555. }
  556. sv pack(u8 *r,gf p[4])
  557. {
  558. gf tx, ty, zi;
  559. inv25519(zi, p[2]);
  560. M(tx, p[0], zi);
  561. M(ty, p[1], zi);
  562. pack25519(r, ty);
  563. r[31] ^= par25519(tx) << 7;
  564. }
  565. sv scalarmult(gf p[4],gf q[4],const u8 *s)
  566. {
  567. int i;
  568. set25519(p[0],gf0);
  569. set25519(p[1],gf1);
  570. set25519(p[2],gf1);
  571. set25519(p[3],gf0);
  572. for (i = 255;i >= 0;--i) {
  573. u8 b = (s[i/8]>>(i&7))&1;
  574. cswap(p,q,b);
  575. add(q,p);
  576. add(p,p);
  577. cswap(p,q,b);
  578. }
  579. }
  580. sv scalarbase(gf p[4],const u8 *s)
  581. {
  582. gf q[4];
  583. set25519(q[0],X);
  584. set25519(q[1],Y);
  585. set25519(q[2],gf1);
  586. M(q[3],X,Y);
  587. scalarmult(p,q,s);
  588. }
  589. int crypto_sign_keypair(u8 *pk, u8 *sk)
  590. {
  591. u8 d[64];
  592. gf p[4];
  593. int i;
  594. randombytes(sk, 32);
  595. crypto_hash(d, sk, 32);
  596. d[0] &= 248;
  597. d[31] &= 127;
  598. d[31] |= 64;
  599. scalarbase(p,d);
  600. pack(pk,p);
  601. FOR(i,32) sk[32 + i] = pk[i];
  602. return 0;
  603. }
  604. static const u64 L[32] = {0xed, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x10};
  605. sv modL(u8 *r,i64 x[64])
  606. {
  607. i64 carry,i,j;
  608. for (i = 63;i >= 32;--i) {
  609. carry = 0;
  610. for (j = i - 32;j < i - 12;++j) {
  611. x[j] += carry - 16 * x[i] * L[j - (i - 32)];
  612. carry = (x[j] + 128) >> 8;
  613. x[j] -= carry << 8;
  614. }
  615. x[j] += carry;
  616. x[i] = 0;
  617. }
  618. carry = 0;
  619. FOR(j,32) {
  620. x[j] += carry - (x[31] >> 4) * L[j];
  621. carry = x[j] >> 8;
  622. x[j] &= 255;
  623. }
  624. FOR(j,32) x[j] -= carry * L[j];
  625. FOR(i,32) {
  626. x[i+1] += x[i] >> 8;
  627. r[i] = x[i] & 255;
  628. }
  629. }
  630. sv reduce(u8 *r)
  631. {
  632. i64 x[64],i;
  633. FOR(i,64) x[i] = (u64) r[i];
  634. FOR(i,64) r[i] = 0;
  635. modL(r,x);
  636. }
  637. int crypto_sign(u8 *sm,u64 *smlen,const u8 *m,u64 n,const u8 *sk)
  638. {
  639. u8 d[64],h[64],r[64];
  640. i64 i,j,x[64];
  641. gf p[4];
  642. crypto_hash(d, sk, 32);
  643. d[0] &= 248;
  644. d[31] &= 127;
  645. d[31] |= 64;
  646. *smlen = n+64;
  647. FOR(i,n) sm[64 + i] = m[i];
  648. FOR(i,32) sm[32 + i] = d[32 + i];
  649. crypto_hash(r, sm+32, n+32);
  650. reduce(r);
  651. scalarbase(p,r);
  652. pack(sm,p);
  653. FOR(i,32) sm[i+32] = sk[i+32];
  654. crypto_hash(h,sm,n + 64);
  655. reduce(h);
  656. FOR(i,64) x[i] = 0;
  657. FOR(i,32) x[i] = (u64) r[i];
  658. FOR(i,32) FOR(j,32) x[i+j] += h[i] * (u64) d[j];
  659. modL(sm + 32,x);
  660. return 0;
  661. }
  662. static int unpackneg(gf r[4],const u8 p[32])
  663. {
  664. gf t, chk, num, den, den2, den4, den6;
  665. set25519(r[2],gf1);
  666. unpack25519(r[1],p);
  667. S(num,r[1]);
  668. M(den,num,D);
  669. Z(num,num,r[2]);
  670. A(den,r[2],den);
  671. S(den2,den);
  672. S(den4,den2);
  673. M(den6,den4,den2);
  674. M(t,den6,num);
  675. M(t,t,den);
  676. pow2523(t,t);
  677. M(t,t,num);
  678. M(t,t,den);
  679. M(t,t,den);
  680. M(r[0],t,den);
  681. S(chk,r[0]);
  682. M(chk,chk,den);
  683. if (neq25519(chk, num)) M(r[0],r[0],I);
  684. S(chk,r[0]);
  685. M(chk,chk,den);
  686. if (neq25519(chk, num)) return -1;
  687. if (par25519(r[0]) == (p[31]>>7)) Z(r[0],gf0,r[0]);
  688. M(r[3],r[0],r[1]);
  689. return 0;
  690. }
  691. int crypto_sign_open(u8 *m,u64 *mlen,const u8 *sm,u64 n,const u8 *pk)
  692. {
  693. int i;
  694. u8 t[32],h[64];
  695. gf p[4],q[4];
  696. *mlen = -1;
  697. if (n < 64) return -1;
  698. if (unpackneg(q,pk)) return -1;
  699. FOR(i,n) m[i] = sm[i];
  700. FOR(i,32) m[i+32] = pk[i];
  701. crypto_hash(h,m,n);
  702. reduce(h);
  703. scalarmult(p,q,h);
  704. scalarbase(q,sm + 32);
  705. add(p,q);
  706. pack(t,p);
  707. n -= 64;
  708. if (crypto_verify_32(sm, t)) {
  709. FOR(i,n) m[i] = 0;
  710. return -1;
  711. }
  712. FOR(i,n) m[i] = sm[i + 64];
  713. *mlen = n;
  714. return 0;
  715. }