check_chunking.c 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174
  1. /* This Source Code Form is subject to the terms of the Mozilla Public
  2. * License, v. 2.0. If a copy of the MPL was not distributed with this
  3. * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  4. #include "ua_types.h"
  5. #include "ua_types_encoding_binary.h"
  6. #include "ua_types_generated.h"
  7. #include "ua_types_generated_handling.h"
  8. #include "ua_types_generated_encoding_binary.h"
  9. #include "ua_securechannel.h"
  10. #include "ua_util.h"
  11. #include "check.h"
  12. UA_ByteString *buffers;
  13. size_t bufIndex;
  14. size_t counter;
  15. size_t dataCount;
  16. static UA_StatusCode
  17. sendChunkMockUp(UA_ChunkInfo *ci, UA_Byte **bufPos, const UA_Byte **bufEnd) {
  18. size_t offset = (uintptr_t)(*bufPos - buffers[bufIndex].data);
  19. bufIndex++;
  20. *bufPos = buffers[bufIndex].data;
  21. *bufEnd = &(*bufPos)[buffers[bufIndex].length];
  22. counter++;
  23. dataCount += offset;
  24. return UA_STATUSCODE_GOOD;
  25. }
  26. START_TEST(encodeArrayIntoFiveChunksShallWork) {
  27. size_t arraySize = 30; //number of elements within the array which should be encoded
  28. size_t chunkCount = 6; // maximum chunk count
  29. size_t chunkSize = 30; //size in bytes of each chunk
  30. UA_ChunkInfo ci;
  31. bufIndex = 0;
  32. counter = 0;
  33. dataCount = 0;
  34. buffers = (UA_ByteString*)UA_Array_new(chunkCount, &UA_TYPES[UA_TYPES_BYTESTRING]);
  35. for(size_t i=0;i<chunkCount;i++){
  36. UA_ByteString_allocBuffer(&buffers[i],chunkSize);
  37. }
  38. UA_Int32 *ar = (UA_Int32*)UA_Array_new(arraySize,&UA_TYPES[UA_TYPES_INT32]);
  39. for(size_t i = 0; i < arraySize; i++)
  40. ar[i] = (UA_Int32)i;
  41. UA_Variant v;
  42. UA_Variant_setArrayCopy(&v, ar, arraySize, &UA_TYPES[UA_TYPES_INT32]);
  43. UA_ByteString workingBuffer = buffers[0];
  44. UA_Byte *pos = workingBuffer.data;
  45. const UA_Byte *end = &workingBuffer.data[workingBuffer.length];
  46. UA_StatusCode retval = UA_encodeBinary(&v,&UA_TYPES[UA_TYPES_VARIANT], &pos, &end,
  47. (UA_exchangeEncodeBuffer)sendChunkMockUp, &ci);
  48. ck_assert_uint_eq(retval,UA_STATUSCODE_GOOD);
  49. ck_assert_int_eq(counter,4); //5 chunks allocated - callback called 4 times
  50. dataCount += (uintptr_t)(pos - buffers[bufIndex].data);
  51. ck_assert_int_eq(UA_calcSizeBinary(&v,&UA_TYPES[UA_TYPES_VARIANT]), dataCount);
  52. UA_Variant_deleteMembers(&v);
  53. UA_Array_delete(buffers, chunkCount, &UA_TYPES[UA_TYPES_BYTESTRING]);
  54. UA_Array_delete(ar, arraySize, &UA_TYPES[UA_TYPES_INT32]);
  55. } END_TEST
  56. START_TEST(encodeStringIntoFiveChunksShallWork) {
  57. size_t stringLength = 120; //number of elements within the array which should be encoded
  58. size_t chunkCount = 6; // maximum chunk count
  59. size_t chunkSize = 30; //size in bytes of each chunk
  60. UA_String string;
  61. UA_ChunkInfo ci;
  62. bufIndex = 0;
  63. counter = 0;
  64. dataCount = 0;
  65. UA_String_init(&string);
  66. string.data = (UA_Byte*)UA_malloc(stringLength);
  67. string.length = stringLength;
  68. char tmpString[9] = {'o','p','e','n','6','2','5','4','1'};
  69. //char tmpString[9] = {'1','4','5','2','6','n','e','p','o'};
  70. buffers = (UA_ByteString*)UA_Array_new(chunkCount, &UA_TYPES[UA_TYPES_BYTESTRING]);
  71. for(size_t i=0;i<chunkCount;i++){
  72. UA_ByteString_allocBuffer(&buffers[i],chunkSize);
  73. }
  74. UA_ByteString workingBuffer=buffers[0];
  75. for(size_t i=0;i<stringLength;i++){
  76. size_t tmp = i % 9;
  77. string.data[i] = tmpString[tmp];
  78. }
  79. UA_Variant v;
  80. UA_Variant_setScalarCopy(&v,&string,&UA_TYPES[UA_TYPES_STRING]);
  81. UA_Byte *pos = workingBuffer.data;
  82. const UA_Byte *end = &workingBuffer.data[workingBuffer.length];
  83. UA_StatusCode retval = UA_encodeBinary(&v, &UA_TYPES[UA_TYPES_VARIANT], &pos, &end,
  84. (UA_exchangeEncodeBuffer)sendChunkMockUp, &ci);
  85. ck_assert_uint_eq(retval,UA_STATUSCODE_GOOD);
  86. ck_assert_int_eq(counter,4); //5 chunks allocated - callback called 4 times
  87. dataCount += (uintptr_t)(pos - buffers[bufIndex].data);
  88. ck_assert_int_eq(UA_calcSizeBinary(&v,&UA_TYPES[UA_TYPES_VARIANT]), dataCount);
  89. UA_Variant_deleteMembers(&v);
  90. UA_Array_delete(buffers, chunkCount, &UA_TYPES[UA_TYPES_BYTESTRING]);
  91. UA_String_deleteMembers(&string);
  92. } END_TEST
  93. START_TEST(encodeTwoStringsIntoTenChunksShallWork) {
  94. size_t stringLength = 143; //number of elements within the array which should be encoded
  95. size_t chunkCount = 10; // maximum chunk count
  96. size_t chunkSize = 30; //size in bytes of each chunk
  97. UA_String string;
  98. UA_ChunkInfo ci;
  99. bufIndex = 0;
  100. counter = 0;
  101. dataCount = 0;
  102. UA_String_init(&string);
  103. string.data = (UA_Byte*)UA_malloc(stringLength);
  104. string.length = stringLength;
  105. char tmpString[9] = {'o','p','e','n','6','2','5','4','1'};
  106. buffers = (UA_ByteString*)UA_Array_new(chunkCount, &UA_TYPES[UA_TYPES_BYTESTRING]);
  107. for(size_t i=0;i<chunkCount;i++){
  108. UA_ByteString_allocBuffer(&buffers[i],chunkSize);
  109. }
  110. UA_ByteString workingBuffer=buffers[0];
  111. for(size_t i=0;i<stringLength;i++){
  112. size_t tmp = i % 9;
  113. string.data[i] = tmpString[tmp];
  114. }
  115. UA_Byte *pos = workingBuffer.data;
  116. const UA_Byte *end = &workingBuffer.data[workingBuffer.length];
  117. UA_StatusCode retval = UA_encodeBinary(&string, &UA_TYPES[UA_TYPES_STRING], &pos, &end,
  118. (UA_exchangeEncodeBuffer)sendChunkMockUp, &ci);
  119. ck_assert_uint_eq(retval,UA_STATUSCODE_GOOD);
  120. ck_assert_int_eq(counter,4); //5 chunks allocated - callback called 4 times
  121. size_t offset = (uintptr_t)(pos - buffers[bufIndex].data);
  122. ck_assert_int_eq(UA_calcSizeBinary(&string,&UA_TYPES[UA_TYPES_STRING]), dataCount + offset);
  123. retval = UA_encodeBinary(&string,&UA_TYPES[UA_TYPES_STRING], &pos, &end,
  124. (UA_exchangeEncodeBuffer)sendChunkMockUp, &ci);
  125. dataCount += (uintptr_t)(pos - buffers[bufIndex].data);
  126. ck_assert_uint_eq(retval,UA_STATUSCODE_GOOD);
  127. ck_assert_int_eq(counter,9); //10 chunks allocated - callback called 4 times
  128. ck_assert_int_eq(2 * UA_calcSizeBinary(&string,&UA_TYPES[UA_TYPES_STRING]), dataCount);
  129. UA_Array_delete(buffers, chunkCount, &UA_TYPES[UA_TYPES_BYTESTRING]);
  130. UA_String_deleteMembers(&string);
  131. } END_TEST
  132. int main(void) {
  133. Suite *s = suite_create("Chunked encoding");
  134. TCase *tc_message = tcase_create("encode chunking");
  135. tcase_add_test(tc_message,encodeArrayIntoFiveChunksShallWork);
  136. tcase_add_test(tc_message,encodeStringIntoFiveChunksShallWork);
  137. tcase_add_test(tc_message,encodeTwoStringsIntoTenChunksShallWork);
  138. suite_add_tcase(s, tc_message);
  139. SRunner *sr = srunner_create(s);
  140. srunner_set_fork_status(sr, CK_NOFORK);
  141. srunner_run_all(sr, CK_NORMAL);
  142. int number_failed = srunner_ntests_failed(sr);
  143. srunner_free(sr);
  144. return (number_failed == 0) ? EXIT_SUCCESS : EXIT_FAILURE;
  145. }