check_types_memory.c 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243
  1. #define _XOPEN_SOURCE 500
  2. #include <stdlib.h>
  3. #include <stdio.h>
  4. #include "ua_types.h"
  5. #include "ua_types_generated.h"
  6. #include "ua_types_generated_handling.h"
  7. #include "ua_types_encoding_binary.h"
  8. #include "ua_util.h"
  9. #include "check.h"
  10. START_TEST(newAndEmptyObjectShallBeDeleted) {
  11. // given
  12. void *obj = UA_new(&UA_TYPES[_i]);
  13. // then
  14. ck_assert_ptr_ne(obj, NULL);
  15. // finally
  16. UA_delete(obj, &UA_TYPES[_i]);
  17. }
  18. END_TEST
  19. START_TEST(arrayCopyShallMakeADeepCopy) {
  20. // given
  21. UA_String a1[3];
  22. a1[0] = (UA_String){1, (UA_Byte*)"a"};
  23. a1[1] = (UA_String){2, (UA_Byte*)"bb"};
  24. a1[2] = (UA_String){3, (UA_Byte*)"ccc"};
  25. // when
  26. UA_String *a2;
  27. UA_Int32 retval = UA_Array_copy((const void *)a1, 3, (void **)&a2, &UA_TYPES[UA_TYPES_STRING]);
  28. // then
  29. ck_assert_int_eq(retval, UA_STATUSCODE_GOOD);
  30. ck_assert_int_eq(a1[0].length, 1);
  31. ck_assert_int_eq(a1[1].length, 2);
  32. ck_assert_int_eq(a1[2].length, 3);
  33. ck_assert_int_eq(a1[0].length, a2[0].length);
  34. ck_assert_int_eq(a1[1].length, a2[1].length);
  35. ck_assert_int_eq(a1[2].length, a2[2].length);
  36. ck_assert_ptr_ne(a1[0].data, a2[0].data);
  37. ck_assert_ptr_ne(a1[1].data, a2[1].data);
  38. ck_assert_ptr_ne(a1[2].data, a2[2].data);
  39. ck_assert_int_eq(a1[0].data[0], a2[0].data[0]);
  40. ck_assert_int_eq(a1[1].data[0], a2[1].data[0]);
  41. ck_assert_int_eq(a1[2].data[0], a2[2].data[0]);
  42. // finally
  43. UA_Array_delete((void *)a2, 3, &UA_TYPES[UA_TYPES_STRING]);
  44. }
  45. END_TEST
  46. START_TEST(encodeShallYieldDecode) {
  47. /* floating point types may change the representaton due to several possible NaN values. */
  48. if(_i != UA_TYPES_FLOAT || _i != UA_TYPES_DOUBLE ||
  49. _i != UA_TYPES_CREATESESSIONREQUEST || _i != UA_TYPES_CREATESESSIONRESPONSE ||
  50. _i != UA_TYPES_VARIABLEATTRIBUTES || _i != UA_TYPES_READREQUEST ||
  51. _i != UA_TYPES_MONITORINGPARAMETERS || _i != UA_TYPES_MONITOREDITEMCREATERESULT ||
  52. _i != UA_TYPES_CREATESUBSCRIPTIONREQUEST || _i != UA_TYPES_CREATESUBSCRIPTIONRESPONSE)
  53. return;
  54. // given
  55. UA_ByteString msg1, msg2;
  56. size_t pos = 0;
  57. void *obj1 = UA_new(&UA_TYPES[_i]);
  58. UA_StatusCode retval = UA_ByteString_allocBuffer(&msg1, 65000); // fixed buf size
  59. ck_assert_int_eq(retval, UA_STATUSCODE_GOOD);
  60. retval = UA_encodeBinary(obj1, &UA_TYPES[_i], NULL, NULL, &msg1, &pos);
  61. msg1.length = pos;
  62. if(retval != UA_STATUSCODE_GOOD) {
  63. UA_delete(obj1, &UA_TYPES[_i]);
  64. UA_ByteString_deleteMembers(&msg1);
  65. return;
  66. }
  67. // when
  68. void *obj2 = UA_new(&UA_TYPES[_i]);
  69. pos = 0; retval = UA_decodeBinary(&msg1, &pos, obj2, &UA_TYPES[_i], 0, NULL);
  70. ck_assert_msg(retval == UA_STATUSCODE_GOOD, "could not decode idx=%d,nodeid=%i",
  71. _i, UA_TYPES[_i].typeId.identifier.numeric);
  72. ck_assert(!memcmp(obj1, obj2, UA_TYPES[_i].memSize)); // bit identical decoding
  73. retval = UA_ByteString_allocBuffer(&msg2, 65000);
  74. ck_assert_int_eq(retval, UA_STATUSCODE_GOOD);
  75. pos = 0; retval = UA_encodeBinary(obj2, &UA_TYPES[_i], NULL, NULL, &msg2, &pos);
  76. msg2.length = pos;
  77. ck_assert_int_eq(retval, UA_STATUSCODE_GOOD);
  78. // then
  79. ck_assert_msg(UA_ByteString_equal(&msg1, &msg2) == true, "messages differ idx=%d,nodeid=%i", _i,
  80. UA_TYPES[_i].typeId.identifier.numeric);
  81. // finally
  82. UA_delete(obj1, &UA_TYPES[_i]);
  83. UA_delete(obj2, &UA_TYPES[_i]);
  84. UA_ByteString_deleteMembers(&msg1);
  85. UA_ByteString_deleteMembers(&msg2);
  86. }
  87. END_TEST
  88. START_TEST(decodeShallFailWithTruncatedBufferButSurvive) {
  89. // given
  90. UA_ByteString msg1;
  91. void *obj1 = UA_new(&UA_TYPES[_i]);
  92. size_t pos = 0;
  93. UA_StatusCode retval = UA_ByteString_allocBuffer(&msg1, 65000); // fixed buf size
  94. retval |= UA_encodeBinary(obj1, &UA_TYPES[_i], NULL, NULL, &msg1, &pos);
  95. UA_delete(obj1, &UA_TYPES[_i]);
  96. if(retval != UA_STATUSCODE_GOOD) {
  97. UA_ByteString_deleteMembers(&msg1);
  98. return; // e.g. variants cannot be encoded after an init without failing (no datatype set)
  99. }
  100. // when
  101. void *obj2 = UA_new(&UA_TYPES[_i]);
  102. msg1.length = pos / 2;
  103. pos = 0;
  104. retval = UA_decodeBinary(&msg1, &pos, obj2, &UA_TYPES[_i], 0, NULL);
  105. ck_assert_int_ne(retval, UA_STATUSCODE_GOOD);
  106. UA_delete(obj2, &UA_TYPES[_i]);
  107. UA_ByteString_deleteMembers(&msg1);
  108. }
  109. END_TEST
  110. #define RANDOM_TESTS 1000
  111. START_TEST(decodeScalarBasicTypeFromRandomBufferShallSucceed) {
  112. // given
  113. void *obj1 = NULL;
  114. UA_ByteString msg1;
  115. UA_Int32 retval = UA_STATUSCODE_GOOD;
  116. UA_Int32 buflen = 256;
  117. retval = UA_ByteString_allocBuffer(&msg1, buflen); // fixed size
  118. #ifdef _WIN32
  119. srand(42);
  120. #else
  121. srandom(42);
  122. #endif
  123. for(int n = 0;n < RANDOM_TESTS;n++) {
  124. for(UA_Int32 i = 0;i < buflen;i++) {
  125. #ifdef _WIN32
  126. UA_UInt32 rnd;
  127. rnd = rand();
  128. msg1.data[i] = rnd;
  129. #else
  130. msg1.data[i] = (UA_Byte)random(); // when
  131. #endif
  132. }
  133. size_t pos = 0;
  134. obj1 = UA_new(&UA_TYPES[_i]);
  135. retval |= UA_decodeBinary(&msg1, &pos, obj1, &UA_TYPES[_i], 0, NULL);
  136. //then
  137. ck_assert_msg(retval == UA_STATUSCODE_GOOD, "Decoding %d from random buffer", UA_TYPES[_i].typeId.identifier.numeric);
  138. // finally
  139. UA_delete(obj1, &UA_TYPES[_i]);
  140. }
  141. UA_ByteString_deleteMembers(&msg1);
  142. }
  143. END_TEST
  144. START_TEST(decodeComplexTypeFromRandomBufferShallSurvive) {
  145. // given
  146. UA_ByteString msg1;
  147. UA_Int32 retval = UA_STATUSCODE_GOOD;
  148. UA_Int32 buflen = 256;
  149. retval = UA_ByteString_allocBuffer(&msg1, buflen); // fixed size
  150. #ifdef _WIN32
  151. srand(42);
  152. #else
  153. srandom(42);
  154. #endif
  155. // when
  156. for(int n = 0;n < RANDOM_TESTS;n++) {
  157. for(UA_Int32 i = 0;i < buflen;i++) {
  158. #ifdef _WIN32
  159. UA_UInt32 rnd;
  160. rnd = rand();
  161. msg1.data[i] = rnd;
  162. #else
  163. msg1.data[i] = (UA_Byte)random(); // when
  164. #endif
  165. }
  166. size_t pos = 0;
  167. void *obj1 = UA_new(&UA_TYPES[_i]);
  168. retval |= UA_decodeBinary(&msg1, &pos, obj1, &UA_TYPES[_i], 0, NULL);
  169. UA_delete(obj1, &UA_TYPES[_i]);
  170. }
  171. // finally
  172. UA_ByteString_deleteMembers(&msg1);
  173. }
  174. END_TEST
  175. START_TEST(calcSizeBinaryShallBeCorrect) {
  176. /* Empty variants (with no type defined) cannot be encoded. This is intentional. */
  177. if(_i == UA_TYPES_VARIANT ||
  178. _i == UA_TYPES_VARIABLEATTRIBUTES ||
  179. _i == UA_TYPES_VARIABLETYPEATTRIBUTES)
  180. return;
  181. void *obj = UA_new(&UA_TYPES[_i]);
  182. size_t predicted_size = UA_calcSizeBinary(obj, &UA_TYPES[_i]);
  183. ck_assert_int_ne(predicted_size, 0);
  184. UA_ByteString msg;
  185. UA_StatusCode retval = UA_ByteString_allocBuffer(&msg, predicted_size);
  186. ck_assert_int_eq(retval, UA_STATUSCODE_GOOD);
  187. size_t offset = 0;
  188. retval = UA_encodeBinary(obj, &UA_TYPES[_i], NULL, NULL, &msg, &offset);
  189. if(retval)
  190. printf("%i\n",_i);
  191. ck_assert_int_eq(retval, UA_STATUSCODE_GOOD);
  192. ck_assert_int_eq(offset, predicted_size);
  193. UA_delete(obj, &UA_TYPES[_i]);
  194. UA_ByteString_deleteMembers(&msg);
  195. }
  196. END_TEST
  197. int main(void) {
  198. int number_failed = 0;
  199. SRunner *sr;
  200. Suite *s = suite_create("testMemoryHandling");
  201. TCase *tc = tcase_create("Empty Objects");
  202. tcase_add_loop_test(tc, newAndEmptyObjectShallBeDeleted, UA_TYPES_BOOLEAN, UA_TYPES_COUNT - 1);
  203. tcase_add_test(tc, arrayCopyShallMakeADeepCopy);
  204. tcase_add_loop_test(tc, encodeShallYieldDecode, UA_TYPES_BOOLEAN, UA_TYPES_COUNT - 1);
  205. suite_add_tcase(s, tc);
  206. tc = tcase_create("Truncated Buffers");
  207. tcase_add_loop_test(tc, decodeShallFailWithTruncatedBufferButSurvive, UA_TYPES_BOOLEAN, UA_TYPES_COUNT - 1);
  208. suite_add_tcase(s, tc);
  209. tc = tcase_create("Fuzzing with Random Buffers");
  210. tcase_add_loop_test(tc, decodeScalarBasicTypeFromRandomBufferShallSucceed, UA_TYPES_BOOLEAN, UA_TYPES_DOUBLE);
  211. tcase_add_loop_test(tc, decodeComplexTypeFromRandomBufferShallSurvive, UA_TYPES_NODEID, UA_TYPES_COUNT - 1);
  212. suite_add_tcase(s, tc);
  213. tc = tcase_create("Test calcSizeBinary");
  214. tcase_add_loop_test(tc, calcSizeBinaryShallBeCorrect, UA_TYPES_BOOLEAN, UA_TYPES_COUNT - 1);
  215. suite_add_tcase(s, tc);
  216. sr = srunner_create(s);
  217. srunner_set_fork_status(sr, CK_NOFORK);
  218. srunner_run_all (sr, CK_NORMAL);
  219. number_failed += srunner_ntests_failed(sr);
  220. srunner_free(sr);
  221. return (number_failed == 0) ? EXIT_SUCCESS : EXIT_FAILURE;
  222. }