ua_server_utils.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278
  1. #include "ua_server_internal.h"
  2. /**********************/
  3. /* Parse NumericRange */
  4. /**********************/
  5. static size_t
  6. readDimension(UA_Byte *buf, size_t buflen, UA_NumericRangeDimension *dim) {
  7. size_t progress = UA_readNumber(buf, buflen, &dim->min);
  8. if(progress == 0)
  9. return 0;
  10. if(buflen <= progress + 1 || buf[progress] != ':') {
  11. dim->max = dim->min;
  12. return progress;
  13. }
  14. ++progress;
  15. size_t progress2 = UA_readNumber(&buf[progress], buflen - progress, &dim->max);
  16. if(progress2 == 0)
  17. return 0;
  18. /* invalid range */
  19. if(dim->min >= dim->max)
  20. return 0;
  21. return progress + progress2;
  22. }
  23. UA_StatusCode
  24. parse_numericrange(const UA_String *str, UA_NumericRange *range) {
  25. size_t idx = 0;
  26. size_t dimensionsMax = 0;
  27. UA_NumericRangeDimension *dimensions = NULL;
  28. UA_StatusCode retval = UA_STATUSCODE_GOOD;
  29. size_t offset = 0;
  30. while(true) {
  31. /* alloc dimensions */
  32. if(idx >= dimensionsMax) {
  33. UA_NumericRangeDimension *newds;
  34. size_t newdssize = sizeof(UA_NumericRangeDimension) * (dimensionsMax + 2);
  35. newds = (UA_NumericRangeDimension*)UA_realloc(dimensions, newdssize);
  36. if(!newds) {
  37. retval = UA_STATUSCODE_BADOUTOFMEMORY;
  38. break;
  39. }
  40. dimensions = newds;
  41. dimensionsMax = dimensionsMax + 2;
  42. }
  43. /* read the dimension */
  44. size_t progress = readDimension(&str->data[offset], str->length - offset,
  45. &dimensions[idx]);
  46. if(progress == 0) {
  47. retval = UA_STATUSCODE_BADINDEXRANGEINVALID;
  48. break;
  49. }
  50. offset += progress;
  51. ++idx;
  52. /* loop into the next dimension */
  53. if(offset >= str->length)
  54. break;
  55. if(str->data[offset] != ',') {
  56. retval = UA_STATUSCODE_BADINDEXRANGEINVALID;
  57. break;
  58. }
  59. ++offset;
  60. }
  61. if(retval == UA_STATUSCODE_GOOD && idx > 0) {
  62. range->dimensions = dimensions;
  63. range->dimensionsSize = idx;
  64. } else
  65. UA_free(dimensions);
  66. return retval;
  67. }
  68. /********************************/
  69. /* Information Model Operations */
  70. /********************************/
  71. UA_StatusCode
  72. getTypeHierarchy(UA_NodeStore *ns, const UA_Node *rootRef, UA_Boolean inverse,
  73. UA_NodeId **typeHierarchy, size_t *typeHierarchySize) {
  74. size_t results_size = 20; // probably too big, but saves mallocs
  75. UA_NodeId *results = (UA_NodeId*)UA_malloc(sizeof(UA_NodeId) * results_size);
  76. if(!results)
  77. return UA_STATUSCODE_BADOUTOFMEMORY;
  78. UA_StatusCode retval = UA_NodeId_copy(&rootRef->nodeId, &results[0]);
  79. if(retval != UA_STATUSCODE_GOOD) {
  80. UA_free(results);
  81. return retval;
  82. }
  83. const UA_Node *node = rootRef;
  84. size_t idx = 0; /* Current index (contains NodeId of node) */
  85. size_t last = 0; /* Index of the last element in the array */
  86. const UA_NodeId hasSubtypeNodeId = UA_NODEID_NUMERIC(0, UA_NS0ID_HASSUBTYPE);
  87. while(true) {
  88. for(size_t i = 0; i < node->referencesSize; ++i) {
  89. /* is the reference relevant? */
  90. if(node->references[i].isInverse != inverse ||
  91. !UA_NodeId_equal(&hasSubtypeNodeId, &node->references[i].referenceTypeId))
  92. continue;
  93. /* is the target already considered? (multi-inheritance) */
  94. UA_Boolean duplicate = false;
  95. for(size_t j = 0; j <= last; ++j) {
  96. if(UA_NodeId_equal(&node->references[i].targetId.nodeId, &results[j])) {
  97. duplicate = true;
  98. break;
  99. }
  100. }
  101. if(duplicate)
  102. continue;
  103. /* increase array length if necessary */
  104. if(last + 1 >= results_size) {
  105. UA_NodeId *new_results =
  106. (UA_NodeId*)UA_realloc(results, sizeof(UA_NodeId) * results_size * 2);
  107. if(!new_results) {
  108. retval = UA_STATUSCODE_BADOUTOFMEMORY;
  109. break;
  110. }
  111. results = new_results;
  112. results_size *= 2;
  113. }
  114. /* copy new nodeid to the end of the list */
  115. retval = UA_NodeId_copy(&node->references[i].targetId.nodeId, &results[++last]);
  116. if(retval != UA_STATUSCODE_GOOD)
  117. break;
  118. }
  119. /* Get the next node */
  120. next:
  121. ++idx;
  122. if(idx > last || retval != UA_STATUSCODE_GOOD)
  123. break;
  124. node = UA_NodeStore_get(ns, &results[idx]);
  125. if(!node || node->nodeClass != rootRef->nodeClass)
  126. goto next;
  127. }
  128. if(retval != UA_STATUSCODE_GOOD) {
  129. UA_Array_delete(results, last, &UA_TYPES[UA_TYPES_NODEID]);
  130. return retval;
  131. }
  132. *typeHierarchy = results;
  133. *typeHierarchySize = last + 1;
  134. return UA_STATUSCODE_GOOD;
  135. }
  136. UA_Boolean
  137. isNodeInTree(UA_NodeStore *ns, const UA_NodeId *leafNode, const UA_NodeId *nodeToFind,
  138. const UA_NodeId *referenceTypeIds, size_t referenceTypeIdsSize) {
  139. if(UA_NodeId_equal(leafNode, nodeToFind))
  140. return true;
  141. const UA_Node *node = UA_NodeStore_get(ns,leafNode);
  142. if(!node)
  143. return false;
  144. /* Search upwards in the tree */
  145. for(size_t i = 0; i < node->referencesSize; ++i) {
  146. if(!node->references[i].isInverse)
  147. continue;
  148. /* Recurse only for valid reference types */
  149. for(size_t j = 0; j < referenceTypeIdsSize; ++j) {
  150. if(UA_NodeId_equal(&node->references[i].referenceTypeId, &referenceTypeIds[j]) &&
  151. isNodeInTree(ns, &node->references[i].targetId.nodeId, nodeToFind,
  152. referenceTypeIds, referenceTypeIdsSize))
  153. return true;
  154. }
  155. }
  156. return false;
  157. }
  158. const UA_Node *
  159. getNodeType(UA_Server *server, const UA_Node *node) {
  160. /* The reference to the parent is different for variable and variabletype */
  161. UA_NodeId parentRef;
  162. UA_Boolean inverse;
  163. if(node->nodeClass == UA_NODECLASS_VARIABLE ||
  164. node->nodeClass == UA_NODECLASS_OBJECT) {
  165. parentRef = UA_NODEID_NUMERIC(0, UA_NS0ID_HASTYPEDEFINITION);
  166. inverse = false;
  167. } else if(node->nodeClass == UA_NODECLASS_VARIABLETYPE ||
  168. /* node->nodeClass == UA_NODECLASS_OBJECTTYPE || // objecttype may have multiple parents */
  169. node->nodeClass == UA_NODECLASS_REFERENCETYPE ||
  170. node->nodeClass == UA_NODECLASS_DATATYPE) {
  171. parentRef = UA_NODEID_NUMERIC(0, UA_NS0ID_HASSUBTYPE);
  172. inverse = true;
  173. } else {
  174. return NULL;
  175. }
  176. /* stop at the first matching candidate */
  177. UA_NodeId *parentId = NULL;
  178. for(size_t i = 0; i < node->referencesSize; ++i) {
  179. if(node->references[i].isInverse == inverse &&
  180. UA_NodeId_equal(&node->references[i].referenceTypeId, &parentRef)) {
  181. parentId = &node->references[i].targetId.nodeId;
  182. break;
  183. }
  184. }
  185. if(!parentId)
  186. return NULL;
  187. return UA_NodeStore_get(server->nodestore, parentId);
  188. }
  189. const UA_VariableTypeNode *
  190. getVariableNodeType(UA_Server *server, const UA_VariableNode *node) {
  191. const UA_Node *type = getNodeType(server, (const UA_Node*)node);
  192. if(!type || type->nodeClass != UA_NODECLASS_VARIABLETYPE)
  193. return NULL;
  194. return (const UA_VariableTypeNode*)type;
  195. }
  196. const UA_ObjectTypeNode *
  197. getObjectNodeType(UA_Server *server, const UA_ObjectNode *node) {
  198. const UA_Node *type = getNodeType(server, (const UA_Node*)node);
  199. if(type->nodeClass != UA_NODECLASS_OBJECTTYPE)
  200. return NULL;
  201. return (const UA_ObjectTypeNode*)type;
  202. }
  203. UA_Boolean
  204. UA_Node_hasSubTypeOrInstances(const UA_Node *node) {
  205. const UA_NodeId hasSubType = UA_NODEID_NUMERIC(0, UA_NS0ID_HASSUBTYPE);
  206. const UA_NodeId hasTypeDefinition = UA_NODEID_NUMERIC(0, UA_NS0ID_HASTYPEDEFINITION);
  207. for(size_t i = 0; i < node->referencesSize; ++i) {
  208. if(node->references[i].isInverse == false &&
  209. UA_NodeId_equal(&node->references[i].referenceTypeId, &hasSubType))
  210. return true;
  211. if(node->references[i].isInverse == true &&
  212. UA_NodeId_equal(&node->references[i].referenceTypeId, &hasTypeDefinition))
  213. return true;
  214. }
  215. return false;
  216. }
  217. /* For mulithreading: make a copy of the node, edit and replace.
  218. * For singletrheading: edit the original */
  219. UA_StatusCode
  220. UA_Server_editNode(UA_Server *server, UA_Session *session,
  221. const UA_NodeId *nodeId, UA_EditNodeCallback callback,
  222. const void *data) {
  223. UA_StatusCode retval;
  224. do {
  225. #ifndef UA_ENABLE_MULTITHREADING
  226. const UA_Node *node = UA_NodeStore_get(server->nodestore, nodeId);
  227. if(!node)
  228. return UA_STATUSCODE_BADNODEIDUNKNOWN;
  229. UA_Node *editNode = (UA_Node*)(uintptr_t)node; // dirty cast
  230. retval = callback(server, session, editNode, data);
  231. return retval;
  232. #else
  233. UA_Node *copy = UA_NodeStore_getCopy(server->nodestore, nodeId);
  234. if(!copy)
  235. return UA_STATUSCODE_BADOUTOFMEMORY;
  236. retval = callback(server, session, copy, data);
  237. if(retval != UA_STATUSCODE_GOOD) {
  238. UA_NodeStore_deleteNode(copy);
  239. return retval;
  240. }
  241. retval = UA_NodeStore_replace(server->nodestore, copy);
  242. #endif
  243. } while(retval != UA_STATUSCODE_GOOD);
  244. return UA_STATUSCODE_GOOD;
  245. }