clustering_precomputed_dbscan.py 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123
  1. # coding: utf8
  2. import numpy as np
  3. import pandas
  4. import csv
  5. from math import sqrt
  6. from sklearn.cluster import DBSCAN
  7. def get_average_xy(list_input, path):
  8. csv_name = path+"/temporary/list_to_csv_with_corner_points.csv"
  9. resultFile = open(csv_name, 'w+')
  10. wr = csv.writer(resultFile, delimiter=";")
  11. wr.writerow(["element", "xmin","ymin","xmax","ymax", "ausrichtung","point_xmi_ymi","point_xma_ymi","point_xmi_yma","point_xma_yma"])
  12. result_df = pandas.DataFrame(columns=["point_xmi_ymi","point_xma_ymi","point_xmi_yma","point_xma_yma","ausrichtung"])
  13. for element in list_input:
  14. xavg_elem = 0
  15. yavg_elem = 0
  16. ymin = 100000000
  17. ymax = 0
  18. xmin = 100000000
  19. xmax = 0
  20. newList = []
  21. check = False
  22. if len(element) == 5 and not isinstance(element[0], list):
  23. newList.append(element)
  24. element = newList
  25. """if len(element) != 5 and isinstance(element[0], list):
  26. for el in element:
  27. check = isinstance(el[0], list)
  28. if len(el) != 5:
  29. print(el)
  30. #if check:
  31. # print(el)"""
  32. for blub in element: #get the smallest and largest x and y value for whole block
  33. if isinstance(blub[0],list) and len(blub[0])==5:
  34. blub = blub [0]
  35. if float(blub[1]) < ymin:
  36. ymin = float(blub[1])
  37. #print("y_min:",y_min)
  38. if float(blub[0]) < xmin:
  39. xmin = float(blub[0])
  40. if float(blub[3]) > ymax:
  41. ymax = float(blub[3])
  42. if float(blub[2]) > xmax:
  43. xmax = float(blub[2])
  44. if float(xmax)-float(xmin) > 1.3*(float(ymax)-float(ymin)):
  45. ausrichtung = 0 #horizontal
  46. if 1.5*(float(xmax)-float(xmin)) < float(ymax)-float(ymin):
  47. ausrichtung = 1 #vertikal
  48. else:
  49. ausrichtung = 3 #sonstiges
  50. ##### GET CORNER POINTS
  51. point_xmi_ymi = [xmin,ymin]
  52. point_xma_ymi = [xmax,ymin]
  53. point_xmi_yma = [xmin,ymax]
  54. point_xma_yma = [xmax,ymax]
  55. wr.writerow([element,xmin,ymin,xmax,ymax, ausrichtung,point_xmi_ymi,point_xma_ymi,point_xmi_yma,point_xma_yma])
  56. result_df.loc[len(result_df)]=[point_xmi_ymi,point_xma_ymi, point_xmi_yma, point_xma_yma,ausrichtung]
  57. resultFile.close()
  58. return result_df
  59. def intersects(rectangle1, rectangle2): #using the separating axis theorem, returns true if they intersect, otherwise false
  60. rect_1_min = eval(rectangle1[0])
  61. rect_1_max = eval(rectangle1[3])
  62. rect1_bottom_left_x= rect_1_min[0]
  63. rect1_top_right_x=rect_1_max[0]
  64. rect1_bottom_left_y= rect_1_max[1]
  65. rect1_top_right_y= rect_1_min[1]
  66. rect_2_min = eval(rectangle2[0])
  67. rect_2_max = eval(rectangle2[3])
  68. rect2_bottom_left_x= rect_2_min[0]
  69. rect2_top_right_x=rect_2_max[0]
  70. rect2_bottom_left_y= rect_2_max[1]
  71. rect2_top_right_y=rect_2_min[1]
  72. return not (rect1_top_right_x < rect2_bottom_left_x or rect1_bottom_left_x > rect2_top_right_x or rect1_top_right_y > rect2_bottom_left_y or rect1_bottom_left_y < rect2_top_right_y)
  73. def dist(rectangle1, rectangle2):
  74. #get minimal distance between two rectangles
  75. distance = 100000000
  76. for point1 in rectangle1[:4]:
  77. point1 = eval(point1)
  78. for point2 in rectangle2[:4]:
  79. point2 = eval(point2)
  80. dist = sqrt(((float(point2[0]) - float(point1[0])))**2 + ((float(point2[1]) - float(point1[1])))**2)
  81. if dist < distance:
  82. distance = dist
  83. if rectangle1[4] != rectangle2[4]:
  84. distance = dist + 100
  85. if intersects(rectangle1, rectangle2):
  86. distance = 0
  87. return distance
  88. def clustering(dm,eps,path):
  89. db = DBSCAN(eps=eps, min_samples=1, metric="precomputed").fit(dm)
  90. labels = db.labels_
  91. n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
  92. print('Estimated number of clusters: %d' % n_clusters_)
  93. data_df = pandas.read_csv(path +"/temporary/list_to_csv_with_corner_points.csv", sep=";")
  94. data_df["cluster"] = labels
  95. data_df.groupby(['cluster', 'ausrichtung'])['element'].apply(','.join).reset_index().to_csv(path+"/temporary/values_clusteredfrom_precomputed_dbscan.csv",sep=";", header=False, index=False)
  96. return data_df
  97. def cluster_and_preprocess(result,eps,path):
  98. result = get_average_xy(result, path) #input: array of arrays, output: either csv file or array of arrays
  99. result.to_csv(path+"/temporary/blub.csv", sep=";", index=False, header=None)
  100. with open(path+"/temporary/blub.csv") as csvfile:
  101. readCSV = csv.reader(csvfile, delimiter=';')
  102. result = list(readCSV)
  103. dm = np.asarray([[dist(p1, p2) for p2 in result] for p1 in result])
  104. clustering_result = clustering(dm,float(eps), path)
  105. return clustering_result