123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- # coding: utf8
- import numpy as np
- import pandas
- import csv
- from math import sqrt
- from sklearn.cluster import DBSCAN
- def get_average_xy(list_input, path):
- csv_name = path+"/temporary/list_to_csv_with_corner_points.csv"
- resultFile = open(csv_name, 'w+')
- wr = csv.writer(resultFile, delimiter=";")
- wr.writerow(["element", "xmin","ymin","xmax","ymax", "ausrichtung","point_xmi_ymi","point_xma_ymi","point_xmi_yma","point_xma_yma"])
- result_df = pandas.DataFrame(columns=["point_xmi_ymi","point_xma_ymi","point_xmi_yma","point_xma_yma","ausrichtung"])
- for element in list_input:
- xavg_elem = 0
- yavg_elem = 0
- ymin = 100000000
- ymax = 0
- xmin = 100000000
- xmax = 0
- newList = []
- check = False
- if len(element) == 5 and not isinstance(element[0], list):
- newList.append(element)
- element = newList
- """if len(element) != 5 and isinstance(element[0], list):
- for el in element:
- check = isinstance(el[0], list)
- if len(el) != 5:
- print(el)
- #if check:
- # print(el)"""
- for blub in element: #get the smallest and largest x and y value for whole block
- if isinstance(blub[0],list) and len(blub[0])==5:
- blub = blub [0]
- if float(blub[1]) < ymin:
- ymin = float(blub[1])
- #print("y_min:",y_min)
- if float(blub[0]) < xmin:
- xmin = float(blub[0])
- if float(blub[3]) > ymax:
- ymax = float(blub[3])
- if float(blub[2]) > xmax:
- xmax = float(blub[2])
- if float(xmax)-float(xmin) > 1.3*(float(ymax)-float(ymin)):
- ausrichtung = 0 #horizontal
- if 1.5*(float(xmax)-float(xmin)) < float(ymax)-float(ymin):
- ausrichtung = 1 #vertikal
- else:
- ausrichtung = 3 #sonstiges
- ##### GET CORNER POINTS
- point_xmi_ymi = [xmin,ymin]
- point_xma_ymi = [xmax,ymin]
- point_xmi_yma = [xmin,ymax]
- point_xma_yma = [xmax,ymax]
- wr.writerow([element,xmin,ymin,xmax,ymax, ausrichtung,point_xmi_ymi,point_xma_ymi,point_xmi_yma,point_xma_yma])
- result_df.loc[len(result_df)]=[point_xmi_ymi,point_xma_ymi, point_xmi_yma, point_xma_yma,ausrichtung]
- resultFile.close()
- return result_df
- def intersects(rectangle1, rectangle2): #using the separating axis theorem, returns true if they intersect, otherwise false
- rect_1_min = eval(rectangle1[0])
- rect_1_max = eval(rectangle1[3])
- rect1_bottom_left_x= rect_1_min[0]
- rect1_top_right_x=rect_1_max[0]
- rect1_bottom_left_y= rect_1_max[1]
- rect1_top_right_y= rect_1_min[1]
- rect_2_min = eval(rectangle2[0])
- rect_2_max = eval(rectangle2[3])
- rect2_bottom_left_x= rect_2_min[0]
- rect2_top_right_x=rect_2_max[0]
- rect2_bottom_left_y= rect_2_max[1]
- rect2_top_right_y=rect_2_min[1]
- return not (rect1_top_right_x < rect2_bottom_left_x or rect1_bottom_left_x > rect2_top_right_x or rect1_top_right_y > rect2_bottom_left_y or rect1_bottom_left_y < rect2_top_right_y)
- def dist(rectangle1, rectangle2):
- #get minimal distance between two rectangles
- distance = 100000000
- for point1 in rectangle1[:4]:
- point1 = eval(point1)
- for point2 in rectangle2[:4]:
- point2 = eval(point2)
- dist = sqrt(((float(point2[0]) - float(point1[0])))**2 + ((float(point2[1]) - float(point1[1])))**2)
- if dist < distance:
- distance = dist
- if rectangle1[4] != rectangle2[4]:
- distance = dist + 100
- if intersects(rectangle1, rectangle2):
- distance = 0
- return distance
- def clustering(dm,eps,path):
- db = DBSCAN(eps=eps, min_samples=1, metric="precomputed").fit(dm)
- labels = db.labels_
- n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
- print('Estimated number of clusters: %d' % n_clusters_)
- data_df = pandas.read_csv(path +"/temporary/list_to_csv_with_corner_points.csv", sep=";")
- data_df["cluster"] = labels
- data_df.groupby(['cluster', 'ausrichtung'])['element'].apply(','.join).reset_index().to_csv(path+"/temporary/values_clusteredfrom_precomputed_dbscan.csv",sep=";", header=False, index=False)
- return data_df
- def cluster_and_preprocess(result,eps,path):
- result = get_average_xy(result, path) #input: array of arrays, output: either csv file or array of arrays
- result.to_csv(path+"/temporary/blub.csv", sep=";", index=False, header=None)
- with open(path+"/temporary/blub.csv") as csvfile:
- readCSV = csv.reader(csvfile, delimiter=';')
- result = list(readCSV)
- dm = np.asarray([[dist(p1, p2) for p2 in result] for p1 in result])
- clustering_result = clustering(dm,float(eps), path)
- return clustering_result
|